Trigonometría. Gonzalo Maureira León.

Slides:



Advertisements
Presentaciones similares
Matematicas 10.
Advertisements

FUNCIONES TRIGONOMETRICAS
UTILICEMOS LAS RAZONES TRIGONOMETRICAS
Introducción a la trigonometría y a las funciones trigonométricas
UNIDAD I UTILICEMOS LAS RAZONES TRIGONOMETRICAS
Matemáticas preuniversitarias
Problemas de aplicación a triángulos
TRIGONOMETRÍA MATEMÁTICAS 4º ESO.
Nombres: Paula mena Frederick Manzo 4°A
TRIGONOMETRÍA DÍA 15 * 1º BAD CT
TRIGONOMETRÍA Matemáticas Preuniversitarias Consuelo Díaz Torres
Funciones trigonométricas de números reales.
Funciones trigonométricas de números reales.
Colegio de bachilleres plantel 8 Santiago Alberto Holguín Torres Grupo 201 Maestra Verónica Gutiérrez.
Capítulo 7: Trigonometría
Angulo de depresión Ángulo de depresión: es el ángulo formado entre la horizontal y la visual del observador hacia abajo. Horizontal Ángulo de depresión.
Trigonometría..
TRIGONOMETRÍA.
Prof. Iván Dario Doria Fernández 2012
TRIGONOMETRIA Trigonometría es una palabra de etimología griega, aunque no es una palabra griega. Se compone de trigonon que significa triángulo y metria.
Tema: Semejanza “Criterios de semejanza de triángulos”
TEOREMA DE PITAGORAS.
TRIGONON = TRIANGULO METRIA = MEDICION
LABORATORIO DE TRIGONOMETRIA Trabajo presentado por: Kelly Dayana Melo Viafara Diana Marcela Luna Allison Acevedo Núñez Lina Maribel Zuñiga Montenegro.

RAZONES TRIGONOMÉTRICAS
SANDRA ISABEL SALAZAR GIRALDO.
ANGULOS VERTICALES.
ESPAD III * TC 19 Teorema de Pitágoras.
EL TEOREMA DE PITÁGORAS
UNIDAD V: ELEMENTOS DE TRIGONOMETRÍA UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO COLEGIO DE CIENCIAS Y HUMANIDADES PLANTEL ( 1 ) AZCAPOTZALCO 202.
República de Panamá. Ministerio de Educación
Habilidades Calcula derivadas de orden superior. Grafica f, f´y f´´ . Resuelve problemas relacionados con velocidad y aceleración. Calcula derivadas de.
Funciones trigonométricas
CÍRCULO TRIGONOMÉTRICO
Cuaderno de Matemática
MATEMÁTICA BÁSICA CERO
FUNCIONES TRIGONOMETRICAS Prof. Carlos E. Pérez Flores CURSO: 2 Bachillerato FECHA:
CALCULANDO ANGULOS DE PUNTOS INALCANZABLES
SOLUCIÓN DE TRIÁNGULOS RECTANGULOS CON TRIGONOMETRIA
Siempre se cumple lo siguiente: A + B + C =180º
Resolución de Triángulos Rectángulos
Sesión 5 Tema: Profesor: Víctor Manuel Reyes Asignatura: Matemática II Sede: Osorno Objetivo: Resolver situaciones donde se aplique conceptos básicos de.
EL TEOREMA DE PITÁGORAS
Institución educativa Santa Felicia
Activando proyección………………………….
Son aquellos ángulos obtenidos en un plano vertical formados por las líneas de mira (o visual) y la línea horizontal que parten de la vista del observador.
TRIGONOMETRÍA 3º AÑO MEDIO.
RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO
Funciones Trigonométricas.
Razones Trigonométricas.
Apuntes Matemáticas 1º ESO
República bolivariana de Venezuela Ministerio del poder popular para la educación C.E.A “Simón Bolívar” Integrante: Freddy González.
Radianes y Aplicaciones de la Trigonometría
GEOMETRÍA ÁNGULOS. CUADRILÁTEROS. ÁREAS IDENTIDADES VOLÚMENES.
Congruencias y semejanzas de figuras planas
Congruencias y semejanzas de figuras planas
Aplicaciones.
TRIGONOMETRÍA (Primera parte)
6 Trigonometría LECTURA INICIAL ESQUEMA INTERNET ACTIVIDAD
Congruencias y semejanzas de figuras planas
Resolución de triángulos
Matemáticas preuniversitarias
Preparado por: Prof. Ana Cecilia Borges
@ Angel Prieto BenitoApuntes de Matemáticas 3º ESO1 GEOMETRÍA PLANA U.D. 9 * 3º ESO E.AP.
TRIGONOMETRIA.
Tema: Medida Teorema de Pitágoras
SEMEJANZA DE TRIÁNGULOS
EDILBRANDO SANTANA MURCIA IED COLEGIO ESTANISLAO ZULETA MATEMATICAS LAS RAZONES TRIGONOMETRICAS.
Transcripción de la presentación:

Trigonometría. Gonzalo Maureira León. Profesor de Matemáticas y Licenciado en Educación.

Objetivos. Comprender el origen y significado de la Trigonometría. Identificar las razones Trigonométricas presentes en los triángulos rectángulos. Realizar diversos ejercicios aplicando los conceptos trigonométricos enseñados.

Trigonometría La trigonometría es una rama de las matemáticas, cuyo significado es la medición de los triángulos, en base a las proporciones de sus lados y ángulos. Matemáticas. Álgebra. Geometría. Trigonometría. Aritmética.

Trigonometría La historia de la trigonometría comienza en primera parte con los Babilonios y los Egipcios, para ser continuada por Indúes y Griegos. Estos últimos establecieron la medida de los ángulos en grados, minutos y segundos.

Trigonometría Para ser más precisos, la trigonometría estudia la relación existente entre los ángulos y los lados del triángulo.

Trigonometría Para resolver problemas relacionados con trigonometría se deben manipular adecuadamente las razones trigonométricas, denominadas por: Seno Coseno Tangente Cosecante Secante Cotangente

Trigonometría Para trabajar en trigonometría se debe tener algún triángulo rectángulo que cumpla con:

Trigonometría

Ejercicios En los siguientes triángulos rectángulos , calcula las seis razones trigonométricas para sus ángulos agudos.

Ejercicios En un triángulo, las medidas de sus ángulos son α, β. Además, se cumple que . Determinar las razones trigonométricas restantes.

Ejercicios Resolver un triángulo equivale a determinar el valor de los tres ángulos y los tres lados. A continuación se dan los tres mínimos que necesitarás para resolver cada triángulo.

Ejercicios Manuel, un astrónomo principiante, midió el ángulo que se muestra en la figura para calcular la distancia que hay entre los centros de la Luna y la Tierra. Considerando que el radio de la Tierra es 6380 km, ¿qué resultado obtuvo Manuel?

Ejercicios Determina el ángulo de inclinación mínimo necesario para que el avión de la figura pueda despegar sobrevolando el cerro.

Ángulos de Elevación y Depresión Si un objeto esta por encima de la horizontal (nivel del ojo), se llama ángulo de elevación al ángulo formado por una línea horizontal y la línea visual hacia el objeto.

Ángulos de Elevación y Depresión Desde un punto a nivel del suelo y a 135 metros de la base de una torre, el ángulo de elevación a la parte más alta de la torre es de 57º. Calcular la altura de la torre. Un árbol de 50 m de alto proyecta una sombra de 60 m de largo. Encontrar el ángulo de elevación del sol en ese momento.

Ángulos de Elevación y Depresión Ángulos de Depresión: Si un objeto esta por debajo de la horizontal, se llama ángulo de depresión al ángulo formado por una línea horizontal y la línea visual hacia el objeto.

Ángulos de Elevación y Depresión Desde lo alto de un faro, cuya altura sobre el nivel del mar es de 120 metros, el ángulo de depresión de una embarcación es de 15. ¿A qué distancia del faro está la embarcación ? ¿Cuál es la altura del puente que cruza un río de 35 metros de ancho, si desde uno de los extremos del puente se ve la base del mismo pero del lado opuesto con un ángulo de depresión de 15º?

Ejercicios Desde un faro, ubicado en la cima de un cerro, se observa un barco con un ángulo de depresión de 30º. Calcular la altura del cerro con el faro incluido.

Ejercicios El cordel de un cometa se encuentra tenso y forma un ángulo de 70 grados con la horizontal. Encuentre la altura del cometa con respecto al suelo, si el cordel mide 45 m. y el extremo de la cuerda se sostiene a 1 m. del suelo. 45 metros x 70º 1 metro

Ejercicios Una persona se encuentra en la ventana de su apartamento que está situada a 8m. del suelo y observa el edificio de enfrente. La parte superior con un ángulo de 40 grados y la parte inferior con un ángulo de depresión de 67 grados. Determine la altura del edificio señalado. Sobre un plano horizontal, un mástil está sujeto por dos cables, de modo que los tirantes quedan a lados opuestos. Los ángulos que forman estos tirantes con respecto al suelo son 35 grados y 55 grados. Si la distancia entre sus bases es de 50 m. ¿cuánto cable se ha gastado?, ¿cuál es la altura a la cual están sujetos los cables? .

Ejercicios Eda observa la estatua del Cristo Blanco con un ángulo de elevación de 53º, sabiendo que se encuentra a una distancia horizontal visual de 6 metros. Calcular la altura del Cristo Blanco.

Ejercicios Una escalera de 6 m. de longitud descansa sobre una pared vertical de tal manera que el pie de la escalera queda a 1,5 m. de la base de la pared. Si el ángulo que forma ésta con el piso es de 43º ¿A qué altura de la pared llega la escalera? Calcule el ancho de una calle, si un observador situado sobre un edificio, ve el otro lado de la misma bajo un ángulo de depresión de 60 grados con respecto a la horizontal.

Control Determine el otro ángulo y calcule las razones trigonométricas de ambos ángulos encontrados. Desde la parte alta de una torre de 120m de altura, el ángulo de depresión hacia un objeto que está frente a la base de la torre es de 24º. ¿Qué tan lejos está el objeto del pie de la torre ? ¿A qué distancia del observador está el objeto ?

Sistema π- radián 1π 180º 2π 360º

Circunferencia Goniométrica.

Regla Nemotécnica.

Ejercicios Determina la altura de un árbol, sabiendo que su sombra mide 15 m cuando el ángulo de elevación del sol es de . Desde lo alto de un cerro, de 70 metros de altura, se observa una casa con un ángulo de depresión de . Calcular la distancia entre la base de la casa y el cerro, y entre la punta del cerro con la casa A qué altura se encuentra un volantín, si el ángulo que forma el hilo con la base del piso es de y el hilo desplegado tiene una longitud de 20 metros. Calcular el área y perímetro de la figura si y .

Determina la altura de un árbol, sabiendo que su sombra mide 15 m cuando el ángulo de elevación del sol es de

Ejercicios Una chimenea tiene 30 metros de altura más que otra. Un observador que está a 10 metros de distancia de la más baja observa que sus cúspides están en una recta inclinada respecto del suelo con un ángulo de . Hallar las alturas de las chimeneas y la distancia entre el observador y la chimenea mas alta. Dos postes de 18 y 12 metros de altura, y la recta que los une en sus puntos más altos forma un ángulo de con el suelo. Determinar la distancia que los separa (distancia entre postes).

Ejercicios Un cable está sujeto a lo alto de una antena de radio y a un punto en el suelo, que está a 40 metros de la base de la antena. Si el alambre forma un ángulo de con el suelo, encuentre la longitud del cable.