1.Escalares, vectores y el álgebra vectorial 2.Funciones vectoriales de varias variables 3.Diferenciación parcial 4.El gradiente, la divergencia y el.

Slides:



Advertisements
Presentaciones similares
UNIVERSIDAD NACIONAL DE INGENIERÍA
Advertisements

TECNOLOGICO DE ESTUDIOS SUPERIORES DE TIANGUISTENCO
1.Escalares, vectores y el álgebra vectorial 2.Funciones vectoriales de varias variables 3.Diferenciación parcial 4.El gradiente, la divergencia y el.
1.Escalares, vectores y el álgebra vectorial 2.Funciones vectoriales de varias variables 3.Diferenciación parcial 4.El gradiente, la divergencia y el.
1.Escalares, vectores y el álgebra vectorial 2.Funciones vectoriales de varias variables 3.Diferenciación parcial 4.El gradiente, la divergencia y el.
Electricidad y magnetismo
1.Electrostática 2.Electrostática con medios materiales 3.Magnetostática 4.Magnetostática con medios materiales 5.Los campos variables en el tiempo y.
Métodos matemáticos Cálculo vectorial El curso debería ser de un año
Jesús Carrera ETSI Caminos UPC
TAREA 6 Cálculo de campos eléctricos y magnéticos de diferentes distribuciones lineales MIGUEL HERNANDO RIVERA BECERRA Usuario : G2N23miguelrivera.
Instituto Nacional de Astrofísica, Óptica y Electrónica
Sea f: D n  , una función definida en un conjunto abierto D de n.
Análisis de fenómenos eléctricos, electromagnéticos y ópticos
CLASE 13 PARTE 1: FUNCIONES REALES DE DOS VARIABLES. Plano tangente.
Programa de Cálculo Vectorial
1.8 Energía potencial eléctrica y definición de potencial eléctrico.
Transformada de Laplace
Recursos matemáticos para física
1.La geometría del espacio euclidiano 2.Funciones vectoriales 3.Diferenciación 4.Integrales múltiples 5.Integrales de línea 6.Integrales de superficie.
FLUJO DE CAMPO ELÉCTRICO Y EJEMPLOS
Cálculo vectorial El curso debería ser de un año
1.Escalares, vectores y el álgebra vectorial 2.Funciones vectoriales de varias variables 3.Diferenciación parcial 4.El gradiente, la divergencia y el.
DERIVADAS PARCIALES Gráficas.

Vectores Javier Junquera.
TEMA I TEORÍA DE CAMPOS.
Cálculo vectorial El curso debería ser de un año
ELECTRICIDAD Y MAGNETISMO
Cálculo vectorial El curso debería ser de un año
1.La geometría del espacio euclidiano 2.Funciones vectoriales 3.Diferenciación 4.Integrales múltiples 5.Integrales de línea 6.Integrales de superficie.
TEORIA ELECTROMAGNETICA:
Vectores.
Matemáticas para diseño industrial
CAMPOS VECTORIALES DEFINICIÓN DOMINIO . REPRESENTACIÓN GEOMÉTRICA
ANTENAS Y RADIO PROPAGACIÓN MEDELLÍN, I SEM 2014 INSTITUTO TECNOLÓGICO METROPOLITANO.
1.La geometría del espacio euclidiano 2.Funciones vectoriales 3.Diferenciación 4.Integrales múltiples 5.Integrales de línea 6.Integrales de superficie.
CALCULO VECTORIAL CALCULO VECTORIAL.
UPC Funciones reales Tema: de varias variables
Cálculo vectorial El curso debería ser de un año
1.La geometría del espacio euclidiano 2.Funciones vectoriales 3.Diferenciación 4.Integrales múltiples 5.Integrales de línea 6.Integrales de superficie.
1.Escalares, vectores y el álgebra vectorial 2.Funciones vectoriales de varias variables 3.Diferenciación parcial 4.El gradiente, la divergencia y el.
TAREA 5 Principios de Electricidad y Magnetismo G12N17 RENÉ.
1.Sistemas de ecuaciones lineales 2.Álgebra de matrices 3.Determinantes 4.Geometría de los vectores 5.Espacios vectoriales 6.Valores propios y diagonalización.
FUNDAMENTOS DE ELECTRICIDAD Y MAGNETISMO
VECTORES.
Ecuaciones de Maxwell Maxwell demostró la existencia de ondas electromagnéticas a partir de las leyes generalizadas de la electricidad y el magnetismo,
TANIA GIZETH VITERY ERAZO CODIGO: DOCENTE: JAIME VILLALOBOS.
1.Electrostática 2.Electrostática con medios materiales 3.Magnetostática 4.Magnetostática con medios materiales 5.Los campos variables en el tiempo y.
Métodos matemáticos Cálculo vectorial El curso debería ser de un año
El campo magnético en el vacío.
Métodos matemáticos Cálculo vectorial El curso debería ser de un año
1.Escalares, vectores y el álgebra vectorial 2.Funciones vectoriales de varias variables 3.Diferenciación parcial 4.El gradiente, la divergencia y el.
TEMA 8 Análisis Matemático II Presentaciones en el Aula
TEMA 9 Análisis Matemático II Presentaciones en el Aula
TEMA 10 Análisis Matemático II Presentaciones en el Aula
Tema IV CINEMÁTICA DE LOS FLUIDOS. Cinemática La cinemática es la rama de la mecánica clásica que estudia las leyes del movimiento de los cuerpos sin.
14.4 Planos tangentes Aproximación lineal Diferenciabilidad
Unidad 5 Electro Estática 5.5 Campo eléctrico Integrantes: Mario Pablo Díaz Gómez Adrián Carrasco Leandro Ulises Herrera Juárez.
Campo Eléctrico Campo Eléctrico en la materia Corriente Eléctrica
LEY GENERALIZADA DE AMPERE
A. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA Dpto. de Física y Química
Integrales curvilíneas
TEMA 2 CAMPOS TEORÍA DE CAMPOS FISICA I CAMPOS ESCALARES. REPRESENTACIÓN ESTACIONARIO 1.
1.Escalares, vectores y el álgebra vectorial 2.Funciones vectoriales de varias variables 3.Diferenciación parcial 4.El gradiente, la divergencia y el.
Instituto Nacional de Astrofísica, Óptica y Electrónica
Instituto Nacional de Astrofísica, Óptica y Electrónica
Instituto Nacional de Astrofísica, Óptica y Electrónica
Instituto Nacional de Astrofísica, Óptica y Electrónica
Métodos matemáticos Cálculo vectorial El curso debería ser de un año
Instituto Nacional de Astrofísica, Óptica y Electrónica
Transcripción de la presentación:

1.Escalares, vectores y el álgebra vectorial 2.Funciones vectoriales de varias variables 3.Diferenciación parcial 4.El gradiente, la divergencia y el rotacional 5.Integración múltiple 6.Integral de línea 7.Integral de superficie 8.El teorema de la divergencia 9.El teorema de Stokes 10.Otros teoremas integrales

1.Los conceptos de escalar, de vector y sus operaciones 2.Entender las funciones vectoriales de un vector 3.Los diferentes conceptos de derivadas de campos escalares y vectoriales 4.El concepto de gradiente, de divergencia y de rotacional. Sus significados físicos. 5.Entender y saber hacer integrales múltiples, integrales de línea e integrales de superficie 6.Conocer, entender y saber aplicar los diferentes teoremas integrales

1.Álgebra 2.Trigonometría 3.Geometría analítica plana 4.Calculo elemental a.Álgebra lineal

En este curso un ESCALAR será cualquier número real

En este curso un ESCALAR será cualquier número real Ejemplos de cantidades escalares: La temperatura La corriente eléctrica La presión El volumen La cantidad de carga La masa La energía

En el cálculo elemental se estudian funciones de una sola variable. Sin embargo, en la vida real la mayoría de los fenómenos y los procesos dependen de varias variables. Por tanto, son las funciones de varias variables las que, en general, sirven para describir correctamente los procesos de la naturaleza. Por motivos metodológicos las podemos dividir como: Funciones vectoriales Funciones escalares de un vector o campos escalares Funciones vectoriales de un vector o campos vectoriales

Gráfica xYφ(x,y)=1-x-y

Gráfica xYf(x,y)=1-x 2 -y

Gráfica

xYx+yy-x

(x,y)F(x,y) (0,0) (1,0)(1,-1) (0,1)(1,1) (2,0) (-1,-1)(-2,0) (-1,1)(0,2) (1,-1)(0,-2) (2,0)(2,-2) (3,-1)(2,-4)

Las líneas del campo

El gradiente es perpendicular a las superficies y curvas de nivel Las superficies y curvas de nivel son en las que el campo escalar no cambia, en las que el campo escalar se mantiene constante, por lo tanto es lógico que el gradiente, que indica la dirección de mayor crecimiento de la función, sea perpendicular a ellas

El campo escalar está en blanco y negro, representando el negro valores mayores. El gradiente está representado por las flechas azules. El gradiente apunta en la dirección de mayor crecimiento del campo escalar

OJO: En inglés se llama “CURL” Equivale a “chinitos”, “rulitos”

¿Cuál es el área de este rectángulo?

Calcular el área de esta región

Lo demostraremos más adelante, utilizando el teorema de Stokes

Necesitamos describir las superficies y sus características, principalmente debemos ser capaces de calcular el vector normal. Necesitamos un campo escalar o un campo vectorial, que son las funciones que vamos a integrar Necesitamos calcular la función a integrar sobre la superficie Finalmente, debemos proyectar el campo “sobre” la normal a la superficie

Gráfica

The Feynman Lectures notes on Physics. Richard P. Feynman. Vol II, capítulo 3, secciones 3.2 y 3.3

The Feynman Lectures notes on Physics. Richard P. Feynman. Vol II, capítulo 3, secciones 3.5 y 3.6