FUNDAMENTOS DE FÍSICA MODERNA RAYOS X

Slides:



Advertisements
Presentaciones similares
ONDAS ELECTROMAGNETICAS PLANAS Por: Luis a. castro
Advertisements

EL Espectro Electromagnético
RAYOS X Diana Marcela Ochica Chaparro.
Rayos ultravioleta Se denomina radiación ultravioleta o radiación UV a la radiación electromagnética cuya longitud de onda está comprendida aproximadamente.
Mallory Paola Pulido Cruz Grupo 8 No. de lista: 32 Código:
Rayos “X” y rayos “gama”
Juan José Granados Velázquez
MATERIA: MEDICINA NUCLEAR
MODELO ATÓMICOS DE BOHR
La Luz ¿Qué es la luz?.
NATURALEZA ELECTROMAGNETICA DE LA MATERIA
El espectro del átomo de hidrógeno
Hospital Universitario Central de Asturias
ONDAS ELECTROMAGNÉTICAS
Modelo atómico de Bohr h rn = n 2mv
ESTRUCTURA ATÓMICA PROPIEDADES PERIODICAS DE LOS ELEMENTOS
FÍSICA DE SEMICONDUCTORES Propiedades de las cargas eléctricas interactuando con un campo eléctrico UN Juan Camilo Ramirez Ayala código: 30 Clase del 28.
FÍSICA DE SEMICONDUCTORES Espectros Atómicos
FÍSICA DE SEMICONDUCTORES Espectros Atómicos
Fundamentos de Física Moderna Espectroscopía
FUNDAMENTOS DE FÍSICA MODERNA RAYOS X
FÍSICA DE SEMICONDUCTORES Espectros Atómicos
JUAN F. QUINTERO G2E26 Clase del 19 de mayo 2015
UN Pedro Arturo Estupiñan Gómez -G2E12Pedro- Clase del 19 de mayo 2015.
Compendio de Experimentos Clásicos de la Física Moderna ANDRÉS FABIÁN DUQUE RINCÓN GIE08ANDRES.
FÍSICA DE SEMICONDUCTORES Modelos Atómicos
FUNDAMENTOS DE FISICA MODERNA -RAYOS X-
FÍSICA DE SEMICONDUCTORES Espectros Atómicos UN Juan Camilo Ramirez Ayala código: 30 6 de junio del 2015.
FUNDAMENTOS DE FÍSICA MODERNA RAYOS X
UN Andres Felipe pinilla torres fsc27andres Clase del 28 de mayo 2015
Rayos X: Un acercamiento experimental
Oswaldo Iván Homez López G1E13Oswaldo. QUIZ 1 1-Esboce brevemente una cadena de conceptos que cubra todos los temas vistos en clase. Radiación Energía.
Oswaldo Ivan Homez Lopez G1E13Oswaldo UNIVERSIDAD NACIONAL DE COLOMBIA.
Fundamentos de Física Moderna Espectroscopía
FUNDAMENTOS DE FÍSICA MODERNA RAYOS X
FÍSICA DE SEMICONDUCTORES Propiedades de las cargas eléctricas interactuando con un campo eléctrico UN Nombre -usuario- Clase del 28 de mayo 2015.
FÍSICA DE SEMICONDUCTORES Propiedades de las cargas eléctricas interactuando con un campo eléctrico UN Tatiana Andrea Gracia Prada -fsc11Tatiana- Clase.
UN Yosef Esteban Ramírez Rosero fsc32yosef Clase del 28 de mayo 2015
UN Oscar Alejandro Olaya Sánchez -fsc24Oscar- Clase del 28 de mayo 2015.
RADIACIÓN DEL CUERPO NEGRO MODELO CUÁNTICO 1900 Jhoan Manuel Martínez Ruiz Universidad Nacional de Colombia.
FÍSICA DE SEMICONDUCTORES Espectros Atómicos UN Juan Felipe Ramírez.
RAYOS X Universidad Nacional de Colombia Fundamentos de física moderna
Germán David Sierra Vargas G1E26
FUNDAMENTOS DE FÍSICA MODERNA RAYOS X
G1E06Domingo DOMINGO ALFONSO CORONADO ARRIETA FISICA MODERNA
UN Carlos Andrés Méndez Tafur fsc23Carlos Clase del 28 de mayo 2015
UN Juan Camilo Calvera -fsc06Juan- Clase del 28 de mayo 2015.
Fundamentos de Física Moderna Espectroscopía
FÍSICA DE SEMICONDUCTORES Propiedades de las cargas eléctricas interactuando con un campo eléctrico UN Andrés Rey Caballero.
Andrés Felipe Duque Bermúdez
Jhoan Manuel Martínez Ruiz Universidad Nacional de Colombia
FÍSICA DE SEMICONDUCTORES Propiedades de las cargas eléctricas interactuando con un campo eléctrico UN Paola Marcela Medina Botache -fsc17Paola- Clase.
Oswaldo Ivan Homez Lopez G1E13Oswaldo
 G2E22Daniel Daniel Alejandro Morales Manjarrez Fundamentos de física moderna Clase 19 de Mayo.
FÍSICA DE SEMICONDUCTORES Propiedades de las cargas eléctricas interactuando con un campo eléctrico Julián David Valbuena Godoy 19 de Junio 2015.
FUNDAMENTOS DE FÍSICA MODERNA RAYOS X UN DIEGO SEBASTIÁN MUÑOZ PINZÓN -G1E18DIEGO- CLASE DEL 19 DE MAYO 2015.
FÍSICA DE SEMICONDUCTORES Propiedades de las cargas eléctricas interactuando con un campo eléctrico UN Cristiam Camilo Bonilla Angarita -fsc04Cristiam-
Jhoan Manuel Martínez Ruiz Universidad Nacional de Colombia.
Física Cuántica Durante el siglo XIX, diversos físicos trataron de comprender el comportamiento de los átomos y moléculas a partir de las leyes físicas.
Sergio Toledo Cortes G2E31
UN David Antonio Burbano Lavao -fsc05David- Clase del 28 de mayo 2015.
FÍSICA DE SEMICONDUCTORES Propiedades de las cargas eléctricas interactuando con un campo eléctrico UN Carlos Francisco Pinto Guerrero fsc28Carlos Clase.
FÍSICA CUÁNTICA.
Compendio de Experimentos Clásicos de la Física Moderna
FÍSICA DE SEMICONDUCTORES Propiedades de las cargas eléctricas interactuando con un campo eléctrico UN Daniel Fabian Zorrilla Alarcon -fsc42Daniel- Clase.
Compendio de Experimentos Clásicos de la Física Moderna
Modelos atómicos hasta el actual
TAREA 8 Yuly Andrea Poveda. Vibración de núcleos  Las radiaciones son originadas debido a que a mayor temperatura es mayor la frecuencia de vibración,
Unidad II.- La luz Objetivo: Describen el origen y propiedades fundamentales de la LUZ Sr. Belarmino Alvarado V. Profesor de Física y Ciencias Naturales.
¿Qué es la luz?. ¿Qué ves cada día al despertar y abrir los ojos? ¿Gracias a qué tipo de energía puedes ver? ¿Es importante la luz para la vida?
Transcripción de la presentación:

FUNDAMENTOS DE FÍSICA MODERNA RAYOS X Oswaldo Ivan Homez Lopez G1E13Oswaldo Clase del 19 de mayo 2015

RAYOS X Hace algo más de un siglo, en 1895, Wilhelm Conrad Röntgen (1845-1923), científico alemán de la Universidad de Würzburg, descubrió una radiación (entonces desconocida y de ahí su nombre de rayos X) que tenía la propiedad de penetrar los cuerpos opacos.

RAYOS X Los rayos X son invisibles a nuestros ojos, pero producen imágenes visibles cuando usamos placas fotográficas o detectores especiales para ello. Los rayos X son radiaciones electromagnéticas, como lo es la luz visible, o las radiaciones ultravioleta e infrarroja, y lo único que los distingue de las demás radiaciones electromagnéticas es su llamada longitud de onda, que es del orden de 10-10 m (equivalente a la unidad de longitud que conocemos como Angstrom).

RAYOS X Esquema sobre la producción de rayos X característicos de un metal.  Un electrón de alta energía puede producir la salida de un electrón cercano al núcleo. La vacante así producida se rellena por el salto de otro electrón de una capa superior, con mayor energía. Esa  diferencia de energía entre niveles (característica del átomo) se transforma en radiación X característica, con una longitud de onda (energía) determinada.

RAYOS X El restablecimiento energético del electrón anódico que se excitó, se lleva a cabo con emisión de rayos X con una frecuencia que corresponde exactamente al salto de energía concreto (cuántico) que necesita ese electrón para volver a su estado inicial. Estos rayos X tienen por tanto una longitud de onda concreta y se conocen con el nombre de radiación característica. Las radiaciones características más importantes en Cristalografía de rayos X son las llamadas líneas K-alpha (Kα), donde los electrones caen a la capa más interior del átomo (mayor energía de ligadura). Sin embargo, además de estas longitudes de onda concretas, se produce también todo un espectro de longitudes de onda, muy próximas entre sí, y que se denomina radiación contínua, debido al frenado por el material de los electrones incidentes

RAYOS X El restablecimiento energético del electrón anódico que se excitó, se lleva a cabo con emisión de rayos X con una frecuencia que corresponde exactamente al salto de energía concreto (cuántico) que necesita ese electrón para volver a su estado inicial. Estos rayos X tienen por tanto una longitud de onda concreta y se conocen con el nombre de radiación característica. Las radiaciones características más importantes en Cristalografía de rayos X son las llamadas líneas K-alpha (Kα), donde los electrones caen a la capa más interior del átomo (mayor energía de ligadura). Sin embargo, además de estas longitudes de onda concretas, se produce también todo un espectro de longitudes de onda, muy próximas entre sí, y que se denomina radiación contínua, debido al frenado por el material de los electrones incidentes.

RAYOS X

RAYOS X https://www.youtube.com/watch?v=K-hiWkujMRk https://www.youtube.com/watch?v=OD8Ff1hHk1U https://www.youtube.com/watch?v=4VZcNcb1fgM *

Recorderis A un filamento de tungsteno, W, se le aplica un Voltaje y por la LEY DE OHM se origina una corriente. El filamento se calienta y esto lo explica la LEY DE JOULE Como resultado se emiten electrones, fenómeno conocido como EFECTO TERMIÓNICO y lo explica la LEY DE RICHARDSON Todo esto se hace en un ambiente de vacío de lo contrario el filamento se quemaría Luego se aplica un Voltaje positivo a una placa que atrae la nube de electrones. Estos pasan por una barrera con un pequeño agujero, un colimador. Así la nube de electrones se convierte en un haz de electrones a manera de un jet En su camino hacia la placa positiva los electrones disminuyen su energía potencial y aumentan la cinética Pregunta: Qué le pasa los electrones que componen el haz incidente en el instante de colisionar bruscamente con la placa? (pista: no se quiebran)

Recorderis Calcule la velocidad V (m/s) del electrón cuando impacta la placa positiva. Considerar el PRINCIPIO DE CONSERVACIÓN DE LA ENERGÍA: ETOTAL = EPOTENCIAL + ECINETICA = ½ me v2 = qe VPLACA Inmediátamente los electrones impactan la placa positiva por FRENADO BRUSCO pierden toda su energía cinética Pero por el Principio de Conservación de la Energía esta no se pierde sino que se transforma así: 1. en un pequeño porcentaje se incrementa un poco la temperatura de la placa, es decir, se produce un poco de radiación térmica. 2. También a la placa le produce algún daño microscópico. 3. En un gran porcentaje se produce radiación electromagnética en el rango de los Rayos X E = h v = 12000 eV = h c / λ Calcule la longitud de onda λ Pregunta: Qué pasa con la longitud de onda si se varía ligeramente el VPLACA? Conclusión: de esta manera se puede diseñar una estructura experimental que pueda producir cualquier λ deseada. Hablamos así de un espectro continuo.

Recorderis En este proceso el haz de electrones incidente colisiona con las nubes de electrones de los átomos que componen la placa. Aquí se presenta el fenómeno de colisión de partículas, a manera de bolas de billar. Así los electrones de la placa absorben energía y escalan a uno ó varios niveles superiores disponibles. Pero estos son inestables y regresan a niveles inferiores. En este último evento ellos disminuyen su energía absorbida y la liberan en forma de fotones con Longitudes de onda λ características ó asociadas a la diferencia de niveles de energía involucradas en los saltos. Así, estas longitudes de onda son características, y propias, de la estructura electrónica de los átomos que componen la placa. Hablamos así de un espectro característico. Pregunta: Qué pasa con la longitud de onda si se varía el material de la placa? Pregunta: Qué tipos de materiales se usan en las placas para la producción de rayos X?