Chapter 6: Failure Prediction for Static Loading

Slides:



Advertisements
Presentaciones similares
FUNDAMENTOS MECANICOS
Advertisements

Diseño a Cargas de Impacto
Teoría de falla bajo carga estática
Ensayos mecánicos.
Propiedades mecánicas de los metales
Sujetadores y Tornillos de Potencia
Torsion in buildings the Mexican research experience after the 1985 earthquake Gustavo Ayala.
La Hipótesis de la Expansion del Fondo Oceánico
La tercera ley de la termodinámica
Capítulo 1: Introducción
Tema III Teorías de fatiga
Criterios de Falla-Carga Estática
Formulario de soldadura y rodamientos
Chapter 10: Tensiones y deformaciones en cilindros
A. Gardi, ENS (IPGP) R. Madariaga ENS Ch. Vigny ENS A. RudloffENS A. Lemoine DGF (BRGM) J. Campos DGF PICS CNRS-CONICYT ACI Catnat CNRS ANR Chile Sismicidad.
Criterios de Fallo estático
Teorías de fallas estáticas
DISEÑO MECÁNICO “TEORIAS DE FALLAS”
TEORIA BEM Y CALCULO DE FUERZAS
Sujetadores y Tornillos de Potencia
Capítulo 2: Esfuerzo y Deformación. Carga Axial
Desarrolla en serie de Fourier:. Desarrolla en serie de Fourier:
Capitulo 3: Torsión Mecánica de Materiales Profesor: Miguel Ángel Ríos
Curved Member in Bending text reference: Figure 4.17, page 161.
2011.
Unidad 1: Materiales, Tensiones y Deformaciones Propiedades Mecánicas de un Material Resistencia: Capacidad de los sólidos deformables para soportar esfuerzos.
Hormigón armado I Usuario:  civ332 Password:  hormigon
INGENIERIA DE MATERIALES Ing. Alejandra Garza Vázquez
Cuban Independence Day May 20, This holiday marks the independence of Cuba from Spain.
Diagrama Esfuerzo Deformación
La Familia Click to Begin. Hola! Me llamo Juan. This activity is all about mi familia. On each page, read the family member word at the top and then click.
Circle the information What is the density of an object with a of 12.5g; who when placed in a graduated cylinder the water rises from 7ml to 12 ml?
Octubre 7, Español 2: Cap. 2B pag. 110 Q: ¿Cuántos estudiantes hay en el salón de clases? ¿Dónde están? “Hay” means there is/ there are.
Metodologías del diseño Ing. J. Gpe. Octavio Cabrera Lazarini M.C.
Capitulo 4: Flexión Pura
CAUSAS OBJETIVAS DE PLANIFICACIÓN EN DEPORTES DE EQUIPO II Introducción La Planificación en DSEQ requiere de una modelización de aproximación, de modelos.
Notebook Organization (Todo el trabajo de esta clase se hace en el cuaderno)
Chapter 7: Failure Prediction for Cyclic and Impact Loading All machines and structural designs are problems in fatigue because the forces of Nature are.
© Crown copyright 2011, Department for Education These materials have been designed to be reproduced for internal circulation, research and teaching or.
PROYECTO DE LAS BANDERAS. OVERVIEW  You and your “country group” will be presenting your country’s flag to the class in Spanish and English. In Spanish,
© Crown copyright 2011, Department for Education These materials have been designed to be reproduced for internal circulation, research and teaching or.
Propiedades mecánicas
When you tell time in Spanish you will use the verb SER. Note that you use es when it is one o’clock and son when it is any hour from two to twelve o’clock.
Mecánica de Materiales
Two-dimensional Shapes Las formas bidimensionales
Landscape with Shapes and Colors Paisaje usando colores y formas My Name Mi Nombre.
DIAGRAMA DE CUERPO LIBRE
PART 1: 1 st slide – record your phone conversation. PART 2: 10 slides – see topics per slide Each slide will have an illustration / clip art that goes.
67.12 MECANISMOS B Profesor  Ing. Rafael Schizzano Práctica  JTP: Ing. Jorge L. Caloia  Srta. Paula Saporiti  Sr. Noel Repetto ESTÁTICA y RESISTENCIA.
SHEET FORMING In stamping, drawing, or pressing, a sheet is clamped (sujeta, anclada) around the edge and formed into a cavity by a punch. The metal is.
Propiedades mecánicas de materiales determinadas mediante el ensayo de tracción En el ensayo de tracción las columnas giran a velocidad constante haciendo.
Operaciones de doblado. Common Die-Bending Operations FIGURE 7.22 Common die-bending operations, showing the die-opening dimension W used in calculating.
MÓDULO 4 MAGNETOSTÁTICA
Concepto de Tensión Cuando se aplican fuerzas externas a un cuerpo deformable, el efecto sobre el cuerpo depende de la magnitud de la “intensidad de fuerza”,
Esfuerzos debidos a cargas axiales
Laboratorio Tecnológico del Uruguay
Diversos procesos de conformado de planchas En este curso veremos los siguientes procesos de conformado e planchas: Embutido, reembutido y afeitado Estirado.
LecturePLUS Timberlake1 The Atom Atomic Number and Mass Number Isotopes.
Mohr-Coulomb Model Short Course on Computational Geotechnics + Dynamics Boulder, Colorado January 5-8, 2004 Stein Sture Professor of Civil Engineering.
Linear Wire Antennas Infinitesimal Dipole From: Balanis, C. A. “Antenna Theory, Analysis and Design” Third Edition. A John Wiley & Sons, Inc.,Publication.
CRITERIOS DE FALLAS Mag. MANUEL DE LA CRUZ VILCA
Youden Analysis. Introduction to W. J. Youden Components of the Youden Graph Calculations Getting the “Circle” What to do with the results.
Las figuras geométricas
Status of the Blanco Shutdown and Plan
Fallas resultantes de carga estática Ing. Guido Torres Resistencia estática 5-2 Concentración del esfuerzo 5-3 Teorías de falla 5-4 Teoría del esfuerzo.
ENGRANAJES. RUEDAS RECTAS ENGRANAJE RECTO Valores Caracteristicos:  Número de dientes, z  Módulo, m en mm  Paso=  m.
A PowerPoint Template Your Presentation Name. This text is a placeholder Main Content Page Layout 2 Copyright 2009.
FLEXIÒN PURA Jesús David Lara Alba, Carlos Castaño Villamil, Royner Medina, Alejandro Garzón Resistencia de Materiales.
TABLET INFORMATION SUBMIT A Presentation Template.
Beam Design. Stress Axial Stress Strain Factor of Safety Bending Stress Shear Stress Beam Selection Deflection Evaluation and Redesign.
Transcripción de la presentación:

Chapter 6: Failure Prediction for Static Loading The concept of failure is central to the design process, and it is by thinking in terms of obviating failure that successful designs are achieved. Henry Petroski, Design Paradigms Image: The Liberty Bell, a classic case of brittle fracture.

Axial Load on Plate with Hole Figure 6.1 Rectangular plate with hole subjected to axial load. (a) Plate with cross-sectional plane. (b) Half of plate with stress distribution. Text Reference: Figure 6.1, page 221

Stress Concentrations for Plate with Hole Figure 6.2 Stress concentration factor for rectangular plate with central hole. (a) Axial Load. [Adapted from Collins (1981).] Text Reference: Figure 6.2, page 222

Stress Concentrations for Plate with Hole (cont.) Figure 6.2 Stress concentration factor for rectangular plate with central hole. (b) Bending. [Adapted from Collins (1981).] Text Reference: Figure 6.2, page 222

Stress Concentrations for Plate with Fillet Figure 6.3 Stress concentration factor for rectangular plate with fillet. (a) Axial Load. [Adapted from Collins (1981).] Text Reference: Figure 6.3, page 223

Stress Concentrations for Plate with Fillet (cont.) Figure 6.3 Stress concentration factor for rectangular plate with fillet. (b) Bending Load. [Adapted from Collins (1981).] Text Reference: Figure 6.3, page 223

Stress Concentrations for Plate with Groove Figure 6.4 Stress concentration factor for rectangular plate with groove. (a) Axial Load. [Adapted from Collins (1981).] Text Reference: Figure 6.4, page 224

Stress Concentrations for Plate with Groove (cont.) Figure 6.4 Stress concentration factor for rectangular plate with groove. (b) Bending. [Adapted from Collins (1981).] Text Reference: Figure 6.4, page 224

Stress Concentrations for Bar with Fillet Figure 6.5 Stress concentration factor for round bar with fillet. (a) Axial load. [Adapted from Collins (1981).] Text Reference: Figure 6.5, page 225

Stress Concentrations for Bar with Fillet (cont.) Figure 6.5 Stress concentration factor for round bar with fillet. (b) Bending. [Adapted from Collins (1981).] Text Reference: Figure 6.5, page 225

Stress Concentrations for Bar with Fillet (cont.) Figure 6.5 Stress concentration factor for round bar with fillet. (c) Torsion. [Adapted from Collins (1981).] Text Reference: Figure 6.5, page 225

Stress Concentrations for Bar with Groove Figure 6.6 Stress concentration factor for round bar with groove. (a) Axial load. [Adapted from Collins (1981).] Text Reference: Figure 6.6, page 226

Stress Concentrations for Bar with Groove (cont.) Figure 6.6 Stress concentration factor for round bar with groove. (b) Bending. [Adapted from Collins (1981).] Text Reference: Figure 6.6, page 226

Stress Concentrations for Bar with Groove (cont.) Figure 6.6 Stress concentration factor for round bar with groove. (c) Torsion. [Adapted from Collins (1981).] Text Reference: Figure 6.6, page 226

Concentración de tensiones: Barra circular con agujero Figura: Caso de flexión

Concentración de tensiones: Barra circular con agujero Figura: Caso de Torsión.

Stress Contours in Bar Figure 6.7 Bar with fillet axially loaded showing stress contours through a flat plate for (a) square corners, (b) rounded corners (c) small groove, and (d) small holes. Text Reference: Figure 6.7, page 229

Modes of Crack Displacement Figure 6.8 Three modes of crack displacement. (a) Mode I, opening; (b) mode II, sliding; (c) mode III, tearing. Text Reference: Figure 6.8, page 231

Tenacidad a la fractura

Yield Stress and Fracture Toughness Data Table 6.1 Yield stress and fracture toughness data for selected engineering materials at room temperature [From ASM International (1989)]. Text Reference: Table 6.1, page 232

Criterios de Fallo estático Teoría del esfuerzo normal máximo. Teoría de la deformación normal máxima. Teoría de la energía de deformación total. Teoría de la energía de distorsión(Von Mises-Hencky). Teoría del esfuerzo cortante máximo(Tresca). Text Reference: Figure 6.9, page 236

Criterios de Fallo estático Teoría del esfuerzo normal máximo. Teoría de la deformación normal máxima. Teoría de la energía de deformación total. Teoría de la energía de distorsión(Von Mises-Hencky). Teoría del esfuerzo cortante máximo(Tresca). Text Reference: Figure 6.9, page 236

Three Dimensional Yield Locus Figure 6.9 Three dimensional yield locus for MSST and DET. [Adapted from Popov (1968).] Text Reference: Figure 6.9, page 236

MSST for Biaxial Stress State Coulomb(1773) Tresca(1868) Figure 6.10 Graphical representation of maximum-shear-stress theory (MSST) for biaxial stress state (z=0) Teoría del cortante máximo La falla ocurre cuando el esfuerzo cortante máximo en una pieza excede el esfuerzo cortante en una probeta a tensión en el punto de fluencia (la mitad del límite de fluencia elástico a tensión).

DET for Biaxial Stress State Coulomb(1773) Tresca(1868) Figure 6.11 Graphical representation of distortion-energy-theory (DET) for biaxial stress state (z=0) Esfuerzo efectivo de Von Mises. Se define como aquel esfuerzo a tensión uniaxial que generaría la misma energía de distorsión que la que se produciría por la combinación real de los esfuerzos aplicados. Cortante puro (torsión pura)

Examen Septiembre 2009 Que carga estática es capaz de transmitir la llave de la figura con un n= 1,7. b) que sucedería si la carga fluctua entre un 30-90% de la carga de diseño. Datos: AISI 1080(380-615) Fiabilidad 90% a T= 50ºC.

Example 6.6 Figure 6.12 Rear wheel suspension used in Example 6.6. Text Reference: Figure 6.12, page 238

Example 6.7 Figure 6.13 Cantilevered, round bar with torsion applied to free end (used in Example 6.7). (a) Bar with coordinates and load; (b) stresses acting on element; (c) Mohr’s circle representation of stresses. Text Reference: Figure 6.13, page 240

Example 6.8 Figure 6.14 Cantilevered, round bar with torsion and transfer force applied to free end (used in Example 6.8). (a) Bar with coordinates and loads; (b) stresses acting on top of bar and at wall; (c) Mohr’s circle representation of stresses. Text Reference: Figure 6.14, page 241

MNST Theory for Biaxial Stress State Figure 6.15 Graphical representation of maximum-normal-stress theory (MNST) for biaxial stress state (z=0) Text Reference: Figure 6.15, page 243

Internal Friction and Modified Mohr Theory Figure 6.16 Internal friction theory and modified Mohr theory for failure prediction of brittle materials. Text Reference: Figure 6.16, page 244

Comparison of Failure Theories to Experiments Figure 6.17: Comparison of experimental results to failure criterion. (a) Brittle fracture. (b) ductile yielding.

Inserted Total Hip Replacement Figure 6.18 Inserted total hip replacement. Text Reference: Figure 6.18, page 247

Dimensions of Femoral Implants Figure 6.19 Dimensions of femoral implants (in inches). Text Reference: Figure 6.19, page 248

Sections of Implant Analyzed for Static Failure Figure 6.20 Section of femoral stem analyzed for static failure. Text Reference: Figure 6.20, page 248