1 Solving Systems of Equations and Inequalities that Involve Conics PROBLEM 4 PROBLEM 1 Standard 4, 9, 16, 17 PROBLEM 3 PROBLEM 2 PROBLEM 5 END SHOW PROBLEM.

Slides:



Advertisements
Presentaciones similares
Subject Pronouns and AR verbs. Who is the subject of a sentence? How can we substitute the subject and still make sense? Ex:
Advertisements

1 DEFINITION OF A CIRCLE and example CIRCLES PROBLEM 1a PROBLEM 2a Standard 4, 9, 17 PROBLEM 1b PROBLEM 2b PROBLEM 3 END SHOW PRESENTATION CREATED BY SIMON.
El objeto directo.
DOS TIPOS DE PROBLEMAS Maths NFC. PROBLEMA 1 Una caja de medicamentos cuesta 5.25€. Si llevo 20 € y compro dos cajas, ¿Cuál es la vuelta?
Writing A Lab Report.
1 Standards 8, 10, 11 Classifying Solids PROBLEM 1PROBLEM 2 Classifying Pyramids Surface Area of Pyramids Volume of a Right Pyramid Reviewing Perimeters.
Stem-changing verbs.
Anna vs Elsa ¿Cómo te llamas? vs ¿Cómo se llama? ¿Cómo estás? vs ¿Cómo está?
Helping Your Child at Home with Math Agenda Welcome and Overview Math Tools Using Math Strategies Homework Grade Level Games Closing: Mathematics Vision.
-go Verbs There is a small but very important group of verbs that we call the “-go” verbs. These verbs are: Hacer: to make/do Poner: to put Salir: to.
Spanish –er and –ir verbs. Verbs in General English and Spanish both conjugate verbs. They can be organized as 1rst, 2 nd, and 3 rd person. If you need.
Pronouns with Commands UNIT 5 LESSON 1. Pronouns with Formal Commands  English Grammar Connection: You often use pronouns with commands to direct the.
Por vs. Para La Clase de Español.
Spanish 4/4 Honors. Háganlo ahora Form the past participle (ado, ido). Remember, there are irregular past participles too. 1. Hablar 2. Tener 3. Escribir.
Telling Time.
Objectives Prove theorems about isosceles and equilateral triangles.
1 Can Quadratic Techniques Solve Polynomial Equations? PROBLEM 1 Standards PROBLEM 3 PROBLEM 2 PRESENTATION CREATED BY SIMON PEREZ. All rights reserved.
La transformada de Laplace
Fact Family4, 5, 20 (provided by the teacher) Problem4 X 5= 20 Perimeter = 18 cm Area4 x 5= 20 sq cm 5 cm 4 cm Example: Teachers: Assign students.
Time Expression with Hacer Grammar Essential #106.
Notes #18 Numbers 31 and higher Standard 1.2
Articles in Spanish Por Señora Myers. Paso 1: Identify a noun as masculine or feminine.
The Formula! …For a Perfect Sentence. Verbs We already know all about those! They give the sentence ACTION! We know how to conjugate ser, we will learn.
HYPERBOLAS Standard 4, 9, 16, 17 DEFINITION OF A HYPERBOLA
Econ. Juan Daniel Morocho Ruiz
Write the letter of the correct definition or sentence next to the word below. 1.________ Algebraic Expression 2.________ Equation 3.________ Exponent.
DEFINITION OF A ELLIPSE STANDARD FORMULAS FOR ELLIPSES
Desarrolla en serie de Fourier:. Desarrolla en serie de Fourier:
1 SOLVING RATIONAL EQUATIONS SIMPLIFYING RATIONAL EXPRESSIONS Standards 4, 7, 15, 25 ADDING RATIONAL EXPRESSIONS PROBLEM 1 RATIONAL EXPRESSIONS PROBLEM.
12- 9 Solve Multi-Step Eqns Solve using the properties and inverse operations. Check your answers Ann earns 1.5 times her normal.
Métodos Matemáticos I.
Ecuación cuadrática o de segundo grado
Unit 2A: Lesson 2 How to Talk About Your Schedule Gramática- Present tense of –ar verbs.
El género y número de los sustantivos (Gender and number agreement of nouns)
JRLeon Geometry Chapter 9.1 HGHS Lesson 9.1 In a right triangle, the side opposite the right angle is called the hypotenuse. The other two sides are called.
Ecuaciones cuadráticas
Objetivo: How do we describe ourselves? Hagan Ahora: In your notebooks, conjugate ser into all six forms. When you receive your workbook, write your first.
El vértice en la parábola está en el punto de abscisa x = -b/2a
Standard and objective Notes # 16   Standard 1.2: Students understand and interpret written and spoken language on a variety of topics  Objective: Students.
Quiz yourself on the following verb slides. How many can you remember?
The verb estar To Be. Estar ☆ estar is used to express: 1)location 2)feelings/emotions.
For the following problems, graph the given lines. Para los siguientes problemas, graficar las líneas dadas.
Spanish Sentence Structure How can we make better sentences?
+ Four Square Vocabulary. + What it is. Whole class, small group or individual activity that: Presents new vocabulary Reviews vocabulary Practices sentence.
Adverbs are words that describe how, when, and where actions take place. They can modify verbs, adjectives, and even other adverbs. In previous lessons,
CONJUGATION.
THE VERB “SER” Gramática 1.2. In English the verb _to_ _be_ is the most common verb. It has _many_ _uses_. Some of them are to _describe_ or _name_ people.
Associative, Commutative, and Distributive Properties of Addition and Multiplication August 18th Students only need to copy the writing in purple. Students.
©2008 The McGraw-Hill Companies, Inc. All rights reserved. Digital Electronics Principles & Applications Seventh Edition Chapter 2 Numbers We Use in Digital.
Essential ?: How do I use these irregular verbs? How are they different than the verbs I already know?
Área Académica: Matemáticas Tema: Factorizaciones Profesor(a): Paz María de Lourdes Cornejo Arteaga Periodo: Julio-Diciembre 2015.
Español 2 Chapter 1 Grammar Lesson 1 Mr. Valdes – 218 Spencer High School
Double Object Pronouns What happens when we have both direct and indirect object pronouns in the same sentence? What goes where? Information for this lesson.
Álgebra TEMA: Factorización de un trinomio cuadrado perfecto PROFESOR: Ing. Diana Aracely Romero Fuentes PERIODO: Julio-Diciembre 2015.
Área Académica: Ingeniería Industrial Profesor(a): I.C.M. Montiel Hernández Justo Fabian Periodo: Julio – Diciembre 2015 SISTEMAS DE ECUACIONES. Método.
Un juego de adivinanzas: ¿Dónde está el tesoro? A1B1C1D1E1F1 A4B4C4D4E4F4 A2B2C2D2E2F2 A5B5C5D5E5F5 A3B3C3D3E3F3 A6B6C6D6E6F6 Inténtalo de nuevo Inténtalo.
Essential question: How do I say what I like and what interests/bores me?
Definite & indefinite articles The articles el, la, los & las are definite articles and mean “the” when translated into English. Use these when talking.
 Una ecuación de segundo grado [1] [2] o ecuación cuadrática de una variable es una ecuación que tiene la forma de una suma algebraica de términos cuyo.
EQUILIBRIUM OF A PARTICLE IN 2-D Today’s Objectives: Students will be able to : a) Draw a free body diagram (FBD), and, b) Apply equations of equilibrium.
Math Vocabulary Week 10 1.  solution of a system of linear equations – any ordered pair that makes all the equations of that system true 2.  system of.
Review for MIDTERM 2016 What we’ve covered so far…
GRAPHIC MATERIALS 1. GRAPHIC MATERIALS. GRAPHIC MATERIALS 1. GRAPHIC MATERIALS.
Youden Analysis. Introduction to W. J. Youden Components of the Youden Graph Calculations Getting the “Circle” What to do with the results.
Algebra I By Monica Yuskaitis. Definitions Variable – A variable is a letter or symbol that represents a number (unknown quantity). 8 + n = 12.
Telling time in Spanish
Asking Questions P. 184 Realidades 1.
Indicaciones y Dónde Está
Present tense of -er and -ir verbs
El verbo ser TO BE OR NOT TO BE?.
Transcripción de la presentación:

1 Solving Systems of Equations and Inequalities that Involve Conics PROBLEM 4 PROBLEM 1 Standard 4, 9, 16, 17 PROBLEM 3 PROBLEM 2 PROBLEM 5 END SHOW PROBLEM 6 PRESENTATION CREATED BY SIMON PEREZ. All rights reserved

2 STANDARD 4: Students factor polynomials representing the difference of squares, perfect square trinomials, and the sum and difference of two cubes STANDARD 8: Students solve and graph quadratic equations by factoring, completing the square, or using the quadratic formula. Students apply these techniques in solving word problems. They also solve quadratic equations in the complex number system. STANDARD 9: Students demonstrate and explain the effect that changing a coefficient has on the graph of quadratic functions; that is, students can determine how the graph of a parabola changes as a, b, and c vary in the equation y = a(x-b) + c. STANDARD 16: Students demonstrate and explain how the geometry of the graph of a conic section (e.g., asymptotes, foci, eccentricity) depends on the coefficients of the quadratic equation representing it. STANDARD 17: Given a quadratic equation of the form ax + by + cx + dy + e = 0, students can use the method for completing the square to put the equation into standard form and can recognize whether the graph of the equation is a circle, ellipse, parabola, or hyperbola. Students can then graph the equation ALGEBRA II STANDARDS THIS LESSON AIMS: PRESENTATION CREATED BY SIMON PEREZ. All rights reserved

ESTÁNDAR 4: Los estudiantes factorizan polinomios representando diferencia de cuadrados, trinomios cuadrados perfectos, y la suma de diferencia de cubos. ESTÁNDAR 8: Los estudiantes resuelven y grafican ecuaciones por factorización, completando el cuadrado, o usando la fórmula cuadrática. Los estudiantes aplican estas técnicas en resolución de problemas. Ellos también resuelven ecuaciones cuadráticas en el sistema de números complejos. ESTÁNDAR 9: Los estudiantes demuestran y explican los efectos que tiene el cambiar coeficientes en la gráfica de funciones cuadráticas; esto es, los estudiantes determinan como la gráfica de una parábola cambia con a, b, y c variando en la ecuación y=a(x-b) + c ESTÁNDAR 16: Los estudiantes demuestran y explican cómo la geometría de la gráfica de una sección cónica (ej. Las asímptotes, focos y excentricidad) dependen de los coeficientes de la ecuación cuadrática que las representa. Estándar 17: Dada una ecuación cuadrática de la forma ax +by + cx + dy + e=0, los estudiantes pueden usar el método de completar al cuadrado para poner la ecuación en forma estándar y pueden reconocer si la gráfica es un círculo, elipse, parábola o hipérbola. Los estudiantes pueden graficar la ecuación PRESENTATION CREATED BY SIMON PEREZ. All rights reserved

x y Standard 4, 9, 16, 17 Solve the following system of equations: y = x – 2x – 3 2 y = -3x – 1 Graphing the parabola: y = x – 2x – 3 2 y = x – 2x + 1 – 3 – 1 2 y = (x – 1) – 4 2 h= 1 k= - 4 Vertex: (1, - 4) Axis of symmetry:x= 1 a= 1 Latus rectum: 1 Focus: ( 1, ) = ( 1, 3.75) Directrix: y = ( ) 1 = Graphing the line: y = -3x – 1 m = -3 = b= -1 Now let’s check this result algebraically! x= 1 y = (-2, 5) (1,- 4) The solution is: (-2, 5) and (1, - 4) A = 1 and C= 0 This is a parabola PRESENTATION CREATED BY SIMON PEREZ. All rights reserved

x y Standard 4, 9, 16, 17 Solve the following system of equations: y = x – 2x – 3 2 y = -3x – 1 x= 1 y = (-2, 5) (1,- 4) Solving by substitution: = x – 2x – x – x = x – 2x – x 0 = x + x – = (x + 2)(x – 1) -21 (2)(-1) = 1 x + 2= 0 x – 1= 0 -2 x = x = 1 y = -3( ) – 1 -2 y = 6 – 1 y = 5 Using: x= -2 y = -3( ) – 1 1 y = -3 – 1 y = -4 Using: x= 1 (-2, 5) (1, - 4) PRESENTATION CREATED BY SIMON PEREZ. All rights reserved

6 Standard 4, 9, 16, 17 Solve the following system of equations: y = x + 3 x + y – 4x – 6y + 9= A = 1 and C= 1 This is a circle Solving by substitution: x + ( ) – 4x – 6( ) + 9=0 2 2 x + 3 x + x + 6x + 9 – 4x – 6x – = x – 4x = 0 2 2x(x – 2) = 0 2x = 0 x – 2 = 0 x = 0 +2 x = 2 y = ( ) y = 3 Using: x= 0 y = ( ) y = 5 Using: x= 2 (0, 3)(2, 5) Now let’s verify by graphing! x – 4x + + y – 6y + +9= (x – 2) + (y – 3) + 9 = (x – 2) + (y – 3) = Center: (2,3) Radius = x y (2, 5) (0, 3) PRESENTATION CREATED BY SIMON PEREZ. All rights reserved

7 Standard 4, 9, 16, 17 Solve the following system of equations: 9x + 4y +18x –16y – 11 = A = 9 and C= 4 This is an ellipse Solving by substitution: 9x + 4( ) + 18x –16( ) – 11=0 2 2 y = x x x + 4( ) + 18x –16( ) – 11= x x + 4( ) + 18x –8( ) – 11=0 2 9x – 42x x + 7 9x + 9x – 42x x + 24x – 56 – 11 = x – 18 = (x+1)(x – 1 )= 0 18 x – 1 = 0 +1 x = 1 y = 2 Using: x= 1 (1, 2) x + 1 = 0 x = -1 y = 5 Using: x= -1 (-1, 5) y = ( ) x – 1 = 0 x + 1 = x y (-1, 5) (1, 2) PRESENTATION CREATED BY SIMON PEREZ. All rights reserved

8 Standard 4, 9, 16, 17 Solve the following system of equations: 4x – 9y – 16x –18y – 29 = A = 4 and C= -9 This is a hyperbola Solving by substitution: 4x – 9( ) – 16x –18( ) – 29= x – 9x – 16x – 18x – 29 = 0 22 – 5x – 34x –29 = 0 2 y = x x x 5x + 34x +29 = 0 2 Let’s solve this using the quadratic formula: X= -b b - 4ac 2a2a 2 +_ where:0 = aX +bX +c 2 We substitute values: x= -( ) ( ) - 4( )( ) 2( ) 2 +_ x= – (20)(29) 10 +_ x= 10 +_ -10 x= = x= 10 +_ + - x= x= – 24 x= x= = -5.8 x= -5.8 y = -5.8 Using: x= -5.8 (-5.8, -5.8) y = -1 Using: x= -1 (-1, -1) -5.8 y = ( ) x y PRESENTATION CREATED BY SIMON PEREZ. All rights reserved

x y Standard 4, 9, 16, 17 Solve by graphing the following system of equations: y – 2x + 2 = 0 2 A = 0 and C= 1 This is a parabola x + y – 2x – 4y + 1= A = 1 and C= 1 This is a circle Graphing the circle: x – 2x + + y – 4y + +1= (x – 1) + (y – 2) + 1 = (x – 1) + (y – 2) = Center: (1,2) Radius = 2 Graphing the parabola: x + y – 2x – 4y + 1= y – 2x + 2 = x 2x = y x = y x = (y – 0) Vertex: (1,0) Directrix: x = 1 – 1 4 ( ) 1 2 x = 1 2 Focus: ( 1 +, 0 ) 1 4 ( ) 1 2 (, 0) Axis of symmetry: y = 0 a = 1 2 Latus rectum: = 2 (1, 0) (3, 2) PRESENTATION CREATED BY SIMON PEREZ. All rights reserved

x y Standard 4, 9, 16, 17 Solve by graphing the following system of inequalities: y – 4x + 4 > 0 2 A = 0 and C= 1 This is a parabola x + y – 2x + 4y – 4< A = 1 and C= 1 This is a circle Graphing the circle: x – 2x + + y + 4y + – 4< (x – 1) + (y + 2) – 4 < (x – 1) + (y + 2) < Center: (1,-2) Radius < 3 x + y – 2x + 4y – 4< Testing (0,0) – 2(0) + 4(0) – 4< < 0 True, so we shade the interior of the circle PRESENTATION CREATED BY SIMON PEREZ. All rights reserved

x y Standard 4, 9, 16, 17 Solve by graphing the following system of inequalities: y – 4x + 4 < 0 2 A = 0 and C= 1 This is a parabola x + y – 2x + 4y – 4< A = 1 and C= 1 This is a circle Graphing the parabola: y – 4x + 4 < x 4x > y x > y x > (y – 0) Vertex: (1,0) Directrix: x = 1 – 1 4 ( ) 1 4 x = 0 Focus: ( 1 +, 0 ) 1 4 ( ) 1 4 (2,0) Axis of symmetry: y = 0 a = 1 4 Latus rectum: = 4 Testing (2,0) 0 – 4(2) + 4 < < 0 True, so we shade the interior of the parabola PRESENTATION CREATED BY SIMON PEREZ. All rights reserved

x y Standard 4, 9, 16, 17 Solve by graphing the following system of inequalities: y – 4x + 4 < 0 2 A = 0 and C= 1 This is a parabola x + y – 2x + 4y – 4< A = 1 and C= 1 This is a circle Graphing the circle: x – 2x + + y + 4y + – 4< (x – 1) + (y + 2) – 4 < (x – 1) + (y + 2) < Center: (1,-2) Radius < 3 Graphing the parabola: x + y – 2x + 4y – 4< y – 4x + 4 < x 4x > y x > y x > (y – 0) Vertex: (1,0) Directrix: x = 1 – 1 4 ( ) 1 4 x = 0 Focus: ( 1 +, 0 ) 1 4 ( ) 1 4 (2,0) Axis of symmetry: y = 0 a = 1 4 Latus rectum: = 4 Solution Region PRESENTATION CREATED BY SIMON PEREZ. All rights reserved