INSTITUCIÓN EDUCATIVA LA RIBERA

Slides:



Advertisements
Presentaciones similares
Los cuerpos geométricos 2.
Advertisements

GILDA FIABANE ESCUELA REPÚBLICA DE LA INDIA
GEOMETRÍA EN EL ESPACIO 3º ESO Ángela Núñez
Área y volumen de cuerpos geométricos
SÓLIDOS GEOMETRICOS Prof. Ingrid Farias A.
POLIEDROS Etimológicamente, la palabra poliedro (Πoλυεδρos) deriva de los términos griegos Πoλυs (mucho) y εδρα (plano). DANNY PERICH C.
U.D. CUERPOS GEOMÉTRICOS.
Octagon Vs los Poliedros
FIGURAS EN EL ESPACIO Llanos Roldán Aroca.
Cuerpos poliédricos. Prismas. Pirámides. Poliedros regulares
FIGURAS PLANAS (POLÍGONOS)
Los sólidos platónicos son:
Prof. Eduardo Vidal Huarcaya
POLIEDROS.
CUERPOS GEOMÉTRICOS A.- Poliedros:
FIGURAS Y CUERPOS GEOMÉTRICOS
Mtro. José Salvador Beltrán León y Cols.
Polígonos encajables R Vázquez 2009.
''Jugando Con Sólidos Geométricos''
(cubos, prismas, pirámides y redondos)
Geometría del espacio – Sólidos geométricos - PRISMA
CUERPOS GEOMÉTRICOS Poliedro regular: es el poliedro cuyas caras son polígonos regulares iguales de modo que en cada vértice concurre el mismo número de.
POLIEDROS.
Realizado por Esther Capitán Rodríguez
CUERPOS GEOMÉTRICOS matemáticas 5º.
Sólidos Platónicos.
Apuntes Matemáticas 2º ESO
CUERPOS GEOMETRICOS Para construir edificios, casas y monumentos el ser humano se ha basado en la forma de los cuerpos geométricos.
Depto. Matematica Colegio Santa Cruz Río Bueno
Construcción de solidos
Área y Volumen de Cuerpos Geométricos
Geometría. Colegio San Gabriel Arcángel. Los Ángeles.
Prof. Eduardo Vidal Huarcaya
Geometría del espacio. Poliedros
CUERPOS EN EL ESPACIO.
POLÍGONOS TÍA ANDREA 4° BÁSICO.
LOS POLIEDROS.
Apuntes de Matemáticas 3º ESO
Apuntes Matemáticas 1º ESO
LAS FIGURAS GEOMÉTRICAS
LOS CUERPOS GEOMÉTRICOS
Figuras y cuerpos geométricos.
en poliedros y cuerpos redondos.
Apuntes de Matemáticas 3º ESO
Poliedros y Cuerpos redondos La palabra poliedro (Πoλυεδρos) deriva de los términos griegos Πoλυs (mucho) y εδρα (plano).
POLIEDROS REGULARES Se les conoce con el nombre de sólidos platónicos en honor a Platón (siglo IV a. de C.), pero lo cierto es que no se sabe en qué época.
POLIEDROS.
POLÍGONOS Y POLIEDROS.
FIGURAS áReAS Y VOLúMENES
TEMARIO Estimación de productos.
MATEMÁTICA BÁSICA CERO
Geometría de la arquitectura “solidos clásicos, cúpulas, esferas y hemisferios ” 17 de SEPTIEMBRE del 2012.
Área y volumen de cuerpos geométricos
Platòn.
Cuerpos geométricos.
Un sólido o cuerpo geométrico es aquél que ocupa un lugar en el espacio, tiene 3 dimensiones:
Definición: “Se llama poliedro la parte de espacio limitada por polígonos planos situados en planos diferentes”. Eduardo Coppetti.
POLIEDROS.
Geometría. Colegio San Gabriel Arcángel. Los Ángeles.
Prof. Eduardo Vidal Huarcaya
POLIEDROS REGULARES Se llama poliedro regular al poliedro cuyas caras son polígonos regulares congruentes y cuyos ángulos poliedros son iguales.
Elaborado por: José Manuel Montoya Misas. POLIEDROS Un poliedro es un cuerpo limitado por polígonos. Los polígonos que limitan el poliedro, se llaman.
Volumen de cuerpos Geométricos.
· Planos, rectas y puntos 14
Recuerda. Ángulos 9 Tipos de ángulos
Pianovi, Gustavo Aranda, Daniel Díaz, Claudio Cruz, Diego Sartori, Diego.
UNIDAD 8: CUERPOS GEOMÉTRICOS
Apuntes de Matemáticas 3º ESO
PONTIFICIA UNIVERSIDAD CATOLICA DEL PERÚ
POLIEDROS POLIEDROS Etimológicamente, la palabra poliedro (Πoλυεδρos) deriva de los términos griegos Πoλυs (mucho) y εδρα (plano). DANNY PERICH C.
Transcripción de la presentación:

INSTITUCIÓN EDUCATIVA LA RIBERA CLASE DE MATEMÁTICAS

POLIEDROS

CUERPOS SÓLIDOS Un cuerpo sólido es todo lo que ocupa lugar en el espacio. Los cuerpos geométricos pueden ser de dos clases: o formados por caras planas (poliedros), o teniendo alguna o todas sus caras curvas (cuerpos redondos).

Actividad a. ¿Qué características comunes ves a todos ellos? b. Dibuja otros tres cuerpos con las mismas características. c. Señala 3 objetos reales que sean poliedros.

DEFINICIÓN Estos cuerpos se llaman poliedros y podemos decir de forma simplificada que son sólidos limitados por caras en forma de polígonos.

Ángulos diedros Dos planos que se cortan, dividen el espacio en cuatro regiones. Cada una de ellas se llama ángulo diedro o simplemente diedro. Las caras del diedro son los semiplanos que lo determinan y la recta común a las dos caras se llama arista.

Si son tres planos los que se cortan, se le llama triedro, si cuatro, tetraedro, si cinco, pentaedro, etc. Al punto común se le llama vértice.

Actividad Observa los siguientes poliedros. Si los sitúas en un plano, observa que hay dos que no se pueden apoyar sobre todas sus caras. ¿Cuáles son?

DEFINICIÓN A los poliedros que tienen alguna cara sobre la que no se pueden apoyar, se les llama cóncavos y a los demás convexos. Nosotros vamos a trabajar siempre, salvo que se indique lo contrario, con poliedros convexos.

Actividad En la figura siguiente tienes pintado un poliedro. En él se te indican algunos elementos característicos. a. ¿Cómo definirías cada uno de estos elementos? b. ¿Cuántas caras, vértices y aristas tiene este poliedro? c. ¿Cuántas caras se habrán de juntar en un vértice como mínimo? Al número de caras que concurren en un mismo vértice se le llama orden del vértice.

FÓRMULA DE EULER (1750) En los poliedros de la figura, cuenta el número de caras, vértices y aristas y escríbelos en la tabla. ¿Encuentras alguna relación entre C, V y A?

CONCLUSIÓN En todos los poliedros convexos se verifica siempre que el número de caras más el número de vértices es igual al número de aristas más dos: C + V = A + 2

Hay otros elementos en los poliedros que debes conocer: ¿Cómo definirías la diagonal de un poliedro? ¿Y el plano diagonal? ¿Cuál es el número de diagonales y de planos diagonales del poliedro anterior?

Explica razonadamente cuáles de las siguientes afirmaciones son verdaderas y cuáles son falsas 1. El número de aristas de un poliedro que concurren en un vértice es, como mínimo, 4. 2. Las caras de un poliedro son todas iguales. 3. Hay poliedros con tres caras. 4. En cada vértice de un poliedro concurren siempre el mismo número de aristas. 5. Las caras de un poliedro han de ser forzosamente polígonos. 6. Todos los poliedros de cinco caras tienen 8 aristas y 5 vértices. 7. El número mínimo de caras que concurren en un vértice es 3. 8. El cilindro es un poliedro.

POLIEDROS REGULARES Se les conoce con el nombre de sólidos platónicos en honor a Platón (siglo IV a. de C.), pero lo cierto es que no se sabe en qué época llegaron a conocerse. Algunos investigadores asignan el cubo, tetraedro y dodecaedro a Pitágoras y el octaedro e icosaedro a Teeteto (415-369 a. de C.)

DEFINICIÓN Un poliedro es regular si todas sus caras son regulares e iguales y todos sus vértices son del mismo orden.

TETRAEDRO REGULAR Formado por tres triángulos equiláteros. Es el que tiene menor volumen de los cinco en comparación con su superficie. Representa el fuego. Está formado por 4 caras, 6 aristas y 4 vértices. FUEGO

OCTAEDRO REGULAR Formado por ocho triángulos equiláteros. Gira libremente cuando se sujeta por vértices opuestos. Por ello, representa al aire en movimiento. Está formado por 8 caras, 12 aristas y 6 vértices. AIRE

ICOSAEDRO REGULAR Formado por veinte triángulos equiláteros. Es el tiene mayor volumen en relación con su superficie y representa al agua. Tiene 20 caras, 30 aristas y 12 vértices. AGUA

HEXAEDRO REGULAR O CUBO Formado por seis cuadrados. Permanece estable sobre su base. Por eso representa la tierra. Está formado por 6 caras, 12 aristas y 8 vértices. TIERRA

DODECAEDRO REGULAR Formado por doce pentágonos regulares. Corresponde al Universo, pues sus doce caras pueden albergar los doce signos del Zodiaco. Tiene 12 caras, 30 aristas y 20 vértices. EL UNIVERSO

A finales del siglo XVI, Kepler imaginó una relación entre los cinco poliedros regulares y las órbitas de los planetas del sistema solar entonces conocidos (Mercurio, Venus, Marte, Júpiter y Saturno). Según él cada planeta se movía en una esfera separada de la contigua por un sólido platónico.

DESARROLLO DE POLIEDROS Si en un poliedro cortamos por un número suficiente de aristas de forma que quede una sola pieza y la extendemos en el plano, obtenemos un desarrollo del poliedro.

Un desarrollo de cada sólido platónico Dibújalos en una cartulina, recórtalos y constrúyelos.

http://home.comcast.net/~meenaks/origami/index.html