Los orígenes de la aproximación bayesiana a la inferencia estadística

Slides:



Advertisements
Presentaciones similares
DISTRIBUCIÓN DE BERNOULLI
Advertisements

Introducción a la Estadística
Curso de Bioestadística Parte 4 Probabilidad
Tema 7: Probabilidad 1. Introducción. 2. Variables aleatorias.
Estadística I. Finanzas Y Contabilidad
Diseño y análisis de algoritmos
Coincidencias con el racionalismo Diferencias con el racionalismo
¿CÓMO HACER UN TRABAJO DE INVESTIGACIÓN?
CONCEPTOS BÁSICOS La Economía es una ciencia social que estudia al individuo en Sociedad desde el punto de vista económico. Es la más rigurosa de las ciencias.
Distribuciones de Probabilidad Conceptos relacionados
DISTRIBUCIONES DISCRETAS DE PROBABILIDAD
INSTITUTO TECNOLÒGICO UNIDAD IV CADENAS DE MARKOV
Introducción a la probabilidad
ANTECEDENTES DE ESTADÍSTICA PARA LA INVESTIGACIÓN: 3
DESIGUALDADES Enero 2007 Autores: Francisco Barrera García
Distribución de Poisson
2. INTRODUCCION A LA TEORIA DE LA PROBABILIDAD
ESTADISTICA INFERENCIAL
Instituto San Lorenzo Departamento de Matemática Probabilidades.
TIPOS DE EXPERIMENTOS:
Análisis de valores perdidos
UNIVERSIDAD DE PANAMÁ FACULTAD DE CIENCIAS NATURALES Y EXACTAS DEPARTAMENTO DE MATEMATICA COLOQUIOS MATEMÁTICOS OPERADORES EN ESPACIOS DE HILBERT. REPRESENTACION.
HISTORIA DE LA PROBABILIDAD
Historia de la Econometría
Curso Práctico de Bioestadística Con Herramientas De Excel
PROBABILIDAD Y ESTADISTICA
Licenciatura en Administración Pública
INTRODUCCION A LAS DISTRIBUCIONES DE PROBABILIDAD Y DISTRIBUCION NORMAL Mario Briones L. MV, MSc 2005.
CÁLCULO DE PROBABILIDADES
Decisiones bajo Incertidumbre Teoría de Juegos
PROBABILIDADES Y DISTRIBUCIONES DE PROBABILIDADES
Ecuaciones diferenciales Método para resolver una ecuación diferencial
Sesión 2: Teoría de Probabilidad “Considero que la probabilidad representa el estado de la mente con respecto a una afirmación, evento u otra cosa para.
Unidad V: Estimación de
Tema 6 Razonamiento aproximado
Probabilidad y juegos de azar
Probabilidad y estadística
DISTRIBUCION DE PROBABILIDADES
Probabilidad. Variables aleatorias.
Tema 6: Modelos probabilísticos
PROBABILIDADES Yolanda y Alberto están jugando con un dado cuyas caras están numeradas del 1 al 6. Pero Alberto es muy tramposo y ha cambiado el dado por.
Departament d’Estadística Divisió de Ciències Experimentals i Matemàtiques Estimación de máxima verosimilitud Programa de doctorado en Estadística, Análisis.
Aprendizaje esperado: Cada alumno y alumna resuelve problemas de distintas índoles que implican el cálculo de probabilidad de ocurrencia de sucesos independientes,
Unidad V: Estimación de
INVESTIGACION DE OPERACIONES
Historia de la Probabilidad
HISTORIA DE LA PROBABILIDAD
ORIGENES DEL CONOCIMIENTO
ESTRUCTURA DE UN PROYECTO DE INVESTIGACIÓN
Breve desarrollo histórico
Unidad V: Estimación de
FUNDAMENTOS SOCIALES DE LA EDUCACIÓN
Investigación Tema 1: Antecedentes del calculo diferencial.
Probabilidades Históricamente, el propósito original de la teoría de probabilidades se limitaba a la descripción y estudios de juegos de azar. Girolamo.
Sesión 2: Teoría de Probabilidad “Considero que la probabilidad representa el estado de la mente con respecto a una afirmación, evento u otra cosa para.
Física Experimental IV Curso 2010 Experimento 12 Página-1 Departamento de Física Fac. Ciencias Exactas - UNLP Distribución de Poisson En cualquier serie.
FISICA Katherinne Triviño # 42 Paula Ubaque # 43 Camila Vertel #45.
2013 EL AÑO INTERNACIONAL DE LA ESTADÍSTICA: UNA PANORÁMICA Universidad Complutense 23 de enero de 2013.
Alumno: Hebert Rangel Gutierrez Matricula: Tutor: Leonardo Olmedo Asignatura: Estadistica Descriptiva Licenciatura en Tecnologías de la Información.
Tema 5 : PROBABILIDAD.
1 2  La Teoría de la Probabilidad constituye la base o fundamento de la Estadística, ya que las ingerencias que hagamos sobre la población o poblaciones.
P y E 2014 Clase 4Gonzalo Perera1 Repaso de clase anterior Probabilidad condicional, independencia de sucesos. Distribución Binomial e Hipergeométrica.
Estadística INTRODUCCIÓN Javier Zertuche Garza.  INTRODUCCIÓN  Estadística, rama de las matemáticas que se ocupa de reunir, organizar y analizar datos.
  Desde tiempos remotos, el hombre ya se preocupaba por las cuestiones fundamentales de la realidad que afectaban de modo especial a su existencia:
Tema 4: Variables aleatorias discretas La distribución binomial
PROBABILIDAD CONDICIONAL Y TEOREMA DE BAYES
2.NOCIONES DE PROBABILIDAD El estudio sistemático de aquello que puede suceder por casualidad, como qué número puede ser el premiado en una rifa o cuál.
Pedro Godoy G.. Distribuciones de probabilidad: Estudiaremos a continuación algunas distribuciones de probabilidad de variables aleatorias importantes.
Ecuaciones Diferenciales Ordinarias de Primer Orden. Tema # 1.
La inferencia o razonamiento Marcos Romero
Transcripción de la presentación:

Los orígenes de la aproximación bayesiana a la inferencia estadística Para Seminario de Hª de la Matemática Curso XXXVI 14 de enero de 2015

Miguel A. Gómez Villegas Catedrático de Estadística y Cálculo de Probabilidades Departamento de Estadística e I.O. Universidad Complutense IMI AHEPE

RESUMEN Preliminares: Jacob Bernoulli y Nicolás Bernoulli, Christian Huygens, Abraham de Moivre Aproximación bayesiana Aproximación frecuentista ¿Qué pasó luego? Conclusiones Bibliografía

Escribe a Van Schooten un tratado sobre los juegos de dados y que dará lugar a De Ratiociniis in Ludo Aleae (El Cálculo en los Juegos de Azar) (1660). Contiene la sustitución de un juego de azar por su valor seguro “La esperanza que se tiene de ganar en un juego tiene un valor tal que si se posee ese valor, puede uno procurarse esa misma ganancia mediante un juego equitativo” Christian Huygens (1629 – 1695) 𝐸 𝑋 =𝑥= 𝑖=1 ∞ 𝑥 𝑖 𝑃 𝑋= 𝑥 𝑖

Más Preliminares Jakob Bernoulli (1654 – 1705) Nicolás Bernoulli (1687 – 1759)

Ars Conjectandi (El Arte de Conjeturar), publicado en Basilea en 1713. Se dan cuenta de que si 𝑋~𝐵𝑒𝑟 𝜃 , entonces lim 𝑛→∞ 𝑃 1 𝑛 𝑖=1 𝑛 𝑥 𝑖 −𝜃 ≤𝜀 ⎸𝜃 =1 y esto llevó a interpretar, mal, que 1 𝑛 𝑖=1 𝑛 𝑥 𝑖 ≈𝜃 Harald Cramér. “Es lo mismo que definir un punto como el límite de una mancha de tiza cuando el área de ésta se hace pequeña”

The Doctrine Chances (La Teoría del Azar) (1718, 1740, 1756) Resuelve el problema de los puntos sobre la interrupción de un juego Resuelve los cinco problemas que Huygens plantea en su libro Calcula la probabilidad de los distintos resultados a los que se puede llegar lanzando un número arbitrario de dados y soluciona el problema de la ruina y el problema de la ocupación Abraham De Moivre (1667 – 1705)

Son problemas de probabilidades directas Hasta aquí no hay “inferencia estadística”

Aproximación bayesiana Nace la inferencia estadística (probabilidades inversas) con Thomas Bayes (1701? – 1761) An Essay Towards Solving a Problem in the Doctrine of Chances (Un Ensayo Hacia la Resolución de un Problema en la Doctrina del Azar) leído ante la Real academia Inglesa en 1763 (póstumo)

Thomas Bayes 1701?-1761 Su padre, Joshua Bayes, fue uno de los primeros ministros protestantes ordenados públicamente Entre 1719 y 1722 estudia en Edimburgo 1731 escribió el tratado “Divina benevolencia o un intento de probar que el fin principal de la Divina Providencia es la felicidad de sus criaturas”

1736, John Noon publica el tratado “Una introducción a la doctrina de fluxiones y una defensa de los matemáticos frente a las objeciones del autor del analista” 1742, es elegido miembro de la Royal Society 1764, Richard Price publica “Una nota sobre la divergencia de la serie ln(z!)” 1764, Richard Price publica “An essay towards solving a problem in the doctrine of chances” 1761, el 21 de abril muere y es enterrado en Dunhill Fields el cementerio reformista donde están enterrados Richard Price, Daniel Defoe,... Gómez Villegas, M.A., Girón, F.J., Martínez, M.L. y Rios, D. (2001) “Un Ensayo Encaminado a Resolver un Problema de la Doctrina del Azar” de Thomas Bayes (Traducción) Revista de la Real Academia de Ciencias Exactas Físicas y Naturales 95, 1-2, 63-80.

Distribución inicial Modelo Distribución final

Problema: Dado el número de veces que un suceso ha ocurrido o fallado, calcular la probabilidad de que la probabilidad de su ocurrencia en un solo experimento esté entre dos valores de probabilidad conocidos, 𝑋= 𝑖=1 𝑛 𝑥 𝑖 𝑃 𝑎<𝜃<𝑏 | 𝑋=𝑟 Definición de probabilidad: La probabilidad de cualquier suceso es el cociente entre el valor en el que uno espera dependiendo de la ocurrencia del suceso cuya probabilidad debe ser calculada, y el valor de la cosa esperada una vez que ésta ha ocurrido. Richard Price (1723 – 1791)

El significado de la definición de probabilidad puede verse en Gómez-Villegas, M.A. (2001). El ensayo encaminado a resolver un problema en la doctrina del azar. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales , 95, 1, 2, 81-85.

Opiniones suscitadas por el Ensayo Laplace (1812) sus demostraciones son algo complicadas Todhunter (1865) el resumen sobre la Teoría de la Probabilidad es excesivamente obscuro Barnard (1958) el trabajo matemático de Bayes es de la más alta calidad K. Pearson (1920) califica el Ensayo como un resultado del siglo XX Fisher (1956) las contribuciones matemáticas de Bayes le hacen merecedor de ser considerado en el primer orden de los pensadores independientes

Contribuciones de Thomas Bayes Introducción de las probabilidades inversas 𝑃 𝑎<𝜃<𝑏 | 𝑋=𝑟 Distribución inicial Uniforme (0,1) 𝜋 𝜃 = 𝐼 0,1 𝜃 La expresión continua del teorema de Bayes 𝜋 𝜃 | 𝑋=𝑟 = 𝜋 𝜃 𝑃 𝑋=𝑟 | 𝜃 0 1 𝜋 𝜃 𝑃 𝑋=𝑟 | 𝜃 𝑑𝜃 Cálculo de la distribución final Beta 𝜋 𝜃 | 𝑋=𝑟 =𝐵𝑒𝑡𝑎 𝜃 | 𝑟+1, 𝑛−𝑟+1

Pierre-Simon de Laplace 1749-1827 Nace en Beamount-en-Auge en la Normandía francesa La revolución francesa se produce en el 1789 En 1789 escribe “Memoria sobre la probabilidad de las causas por los sucesos” En 1812, 1814, 1820 escribe “Teoría Analítica de Probabilidades” donde aparece la versión discreta del teorema de Bayes

P{ 𝐶 𝑖 𝐸 = 𝑃 𝐶 𝑖 𝑃{𝐸| 𝐶 𝑖 } 𝑗=1 𝑛 𝑃 𝐶 𝑗 𝑃{𝐸| 𝐶 𝑗 } Si P{ 𝐶 𝑖 }= 1 𝑛 la expresión queda P{ 𝐶 𝑖 𝐸 = 𝑃{𝐸| 𝐶 𝑖 } 𝑗=1 𝑛 𝑃{𝐸| 𝐶 𝑗 }

Distribución inicial o a priori Verosimilitud o modelo Distribución predictiva Distribución final o a posteriori La verosimilitud es común a la aproximación frecuentista Las distribuciones iniciales y finales son subjetivas La fórmula de Bayes permite incorporar la información

La aproximación frecuentista Históricamente es posterior Sólo trabaja con la verosimilitud o modelo Introduce un estadístico Trabaja con su distribución en el muestreo

En la aproximación bayesiana Ejemplo: a) Una persona asegura que distingue una partitura de Haydin de una de Mozart. b) Un amigo asegura que predice si sale cara al tirar una moneda. c) Una amiga asegura distinguir si el té ha sido hecho echando primero el agua y luego la leche o al revés. En los tres casos se hacen 10 pruebas y aciertan 8 veces

¿Qué pasó luego? E. Borel (1871 – 1956) R.A. Fisher (1890 – 1962) J. Neyman (1894 – 1981) E. S. Pearson (1895 – 1980)

Críticas a la subjetividad La dificultad del cálculo de las distribuciones finales La influencia de personalidades muy destacadas en el desarrollo de métodos “objetivos” como K. Pearson, Wald, Lehman, Wilks, …

Pero actualmente se tiene que… La aproximación bayesiana es automática y fácil de aplicar Hay problemas que solo tienen solución con la aproximación bayesiana Las aplicaciones frecuentistas han de esperar al “genio” que las desarrolle El teorema de Birnbaum: el principio de verosimilitud es equivalente a los principios de condicionalidad y suficiencia ¿Me querrán decir los partidarios de la aproximación frecuentista qué argumento se puede utilizar para negar el principio de condicionalidad o el de suficiencia?

Bibliografía Bernardo, J.M. & Smith, A.F.M.(1994) Bayesian Theory. New York: Wiley. Gelman, A., Carlin, J.B., Stern, H.S.& Rubin, D.B.(2004) Bayesian Data Analysis. London: Chapman & Hall. Girón, F.J. and Gómez Villegas, M.A. (1998) R.A. Fisher: su contribución a la ciencia estadística. Historia de la Matemática en el Siglo XX. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales, 43-61. Gómez Villegas, M.A. (1994). El problema de la probabilidad inversa: Bayes y Laplace. Perspectivas Actuales de Lógica y Filosofía de la Ciencia, (E. Bustos et al., eds). Madrid: Siglo XXI de España Editores, 385-396. Gómez-Villegas, M.A. (2000) R.A.Fisher: el inicio del análisis multivariante. 100cias@uned, 3, 51-55.

Gómez Villegas, M.A. (2001) El “Ensayo encaminado a resolver un problema en la doctrina del azar”, Revista de la Real Academia de Ciencias Exactas Físicas y Naturales (Esp),95, 1-2, 81-85. Gómez-Villegas, M.A. (2001) Thomas Bayes (1701-1761) en su tricentenario, Boletin de la SEIO, 17, 2, 15-17. Gómez-Villegas, M.A. (2004) Estadísticos significativos, 271-286. Hª. de la Probabilidad y la Estadística (II) (Por Santos, J., García, M. eds.) Madrid: Delta Publicaciones. Gómez Villegas, M.A. (2005-2011) Inferencia Estadística, Madrid: Díaz de Santos. Gómez Villegas, M.A., Girón, F.J. & Martínez, M.L. & Rios, D. (2001) Un Ensayo Encaminado a Resolver un Problema en la Doctrina del Azar (traducción), Revista de la Real Academia de Ciencias Exactas Físicas y Naturales (Esp),95, 1-2, 63-80.

Gomez Villegas, M.A. (2009) Karl Pearson, el creador de la estadística matemática, Historia de la Probabilidad y la Estadística IV, J. Basalto y J.J. García (Eds) Congreso Internacional de Historia de la Estadística y la Probabilidad, 351-356. Gómez-Villegas, M.A.  (2010) Erich Lehman (1917-2009). Obituario, Boletín de Estadística e Investigación Operativa, 26, 2, 183-185. Gómez-Villegas, M. A. (2011) Cómo la aproximación bayesiana pasó a ser frecuentista, Historia de la Probabilidad y la Estadística [V], J. Riobóo & I. Riobóo, eds. Santiago de Compostela: Nino-Centro de Impresión Digital, 225-235. Gómez-Villegas, M.A.  (2012) Sobre el concepto del p-valor, Historia de la Probabilidad y la Estadística [VI], J.M.Arribas, A.Alma, Zoín, B.Mañas y A. Vallejo, eds. 26, Madrid:UNED, 351 – 356.

Gómez-Villegas, M.A. (2006) ¿Por qué la inferencia estadística bayesiana?, Boletín de la Sociedad de Estadística e Investigación Operativa, 22, 1, 6-8. Gómez-Villegas, M.A. (2006) Andrei Markov (1856-1922). En el 150 aniversario de su nacimiento, Boletín de la Sociedad de Estadística e Investigación Operativa, 22, 4, 7-8. Gómez-Villegas, M.A.  (2010) Erich Lehmann (1917-2009). Obituario, Boletín de la Sociedad de Estadística e Investigación Operativa, 26, 2, 183-185. Gómez-Villegas, M.A. (2014) 2013. Año internacional de la estadística: una panorámica, Historia de la Probabilidad y la Estadística [VII], J.Santos y S.de Paz, eds., Delta: Madrid, 11 - 29.

De Mora, M. (1989) Los Inicios de la Teoría de la Probabilidad, Siglos XVI y XVII, Erandio: Universidad del País Vasco. Stigler, S.M. (1986) The History of Statistics, the measurement of Uncertainty before 1900, Cambridge: Harvard University Press.

¡Muchas gracias!