PROLEMAS RESUELTOS Y PROPUESTOS ANGULOS TEORIA PROLEMAS RESUELTOS Y PROPUESTOS ABRAHAM GARCIA ROCA agarciar@correo.ulima.edu.pe
Medida del Angulo convexo ANGULO.-Es la abertura formado por dos rayos divergentes que tienen un extremo común que se denomina vértice. ELEMENTOS DE UN ANGULO: O A B LADO VÉRTICE Medida del Angulo convexo Medida del Angulo cóncavo
CLASIFICACIÓN SEGÚN SU MEDIDA a) ÁNGULO CONVEXO 0º < < 180º a.1) ÁNGULO AGUDO 0º < < 90º
a.2) ÁNGULO RECTO = 90º a.3) ÁNGULO OBTUSO 90º < < 180º
CLASIFICACIÓN SEGÚN SU SUMA a) ÁNGULOS COMPLEMENTARIOS = 90º b) ÁNGULOS SUPLEMENTARIOS + = 180º
CLASIFICACIÓN SEGÚN SU POSICIÓN ÁNGULOS OPUESTOS POR EL VÉRTICE b) ÁNGULOS CONSECUTIVOS a) ÁNGULOS ADYACENTES Un lado común Puede formar más ángulos ÁNGULOS OPUESTOS POR EL VÉRTICE Son congruentes
ÁNGULOS ENTRE DOS RECTAS PARALELAS Y UNA RECTA SECANTE 1 2 3 4 5 6 7 8 01. Ángulos alternos internos: m 3 = m 5; m 4 = m 6 04. Ángulos conjugados externos: m 1+m 8=m 2+m 7=180° 02. Ángulos alternos externos: m 1 = m 7; m 2 = m 8 05. Ángulos correspondientes: m 1 = m 5; m 4 = m 8 m 2 = m 6; m 3 = m 7 03. Ángulos conjugados internos: m 3+m 6=m 4+m 5=180°
PROPIEDADES DE LOS ANGULOS 01.-Ángulos que se forman por una línea poligonal entre dos rectas paralelas. x y + + = x + y
02.- ÁNGULOS ENTRE DOS RECTAS PARALELAS + + + + = 180°
03.- ÁNGULOS DE LADOS PERPENDICULARES + = 180°
PROBLEMAS RESUELTOS
90° - { 180° - X - 90° + X } = 180° - 2X 90° - 90° = 180° - 2X X = 90° Problema Nº 01 El complemento de la diferencia entre el suplemento y el complemento de un ángulo “X” es igual al duplo del complemento del ángulo “X”. Calcule la medida del ángulo “X”. RESOLUCIÓN La estructura según el enunciado: 90 - { ( ) - ( ) } = ( ) 180° - X 90° - X 2 90° - X Desarrollando se obtiene: 90° - { 180° - X - 90° + X } = 180° - 2X 90° - 90° = 180° - 2X Luego se reduce a: X = 90° 2X = 180°
Problema Nº 02 La suma de las medidas de dos ángulos es 80° y el complemento del primer ángulo es el doble de la medida del segundo ángulo. Calcule la diferencia de las medidas de dichos ángulos. RESOLUCIÓN Sean los ángulos: y + = 80° = 80° - Dato: ( 1 ) Dato: ( 90° - ) = 2 ( 2 ) = 70° Resolviendo Reemplazando (1) en (2): = 10° Diferencia de las medidas ( 90° - ) = 2 ( 80° - ) - = 70°-10° = 60° 90° - = 160° -2
Problema Nº 03 La suma de sus complementos de dos ángulos es 130° y la diferencia de sus suplementos de los mismos ángulos es 10°.Calcule la medida dichos ángulos. RESOLUCIÓN Sean los ángulos: y Del enunciado: + = 50° (+) ( 90° - ) + ( 90° - ) = 130° - = 10° + = 50° ( 1 ) 2 = 60° Del enunciado: - ( 180° - ) ( 180° - ) = 10° = 30° - = 10° ( 2 ) = 20° Resolviendo: (1) y (2)
Problema Nº 04 Se tienen ángulos adyacentes AOB y BOC (AOB<BOC), se traza la bisectriz OM del ángulo AOC; si los ángulos BOC y BOM miden 60° y 20° respectivamente. Calcule la medida del ángulo AOB. RESOLUCIÓN De la figura: A B O C = 60° - 20° M = 40° 20° X Luego: 60° X = 40° - 20° X = 20°
Problema Nº 05 La diferencia de las medidas de dos ángulos adyacentes AOB y BOC es 30°. Calcule la medida del ángulo formado por la bisectriz del ángulo AOC con el lado OB. Del enunciado: RESOLUCIÓN Construcción de la gráfica según el enunciado AOB - OBC = 30° A O B C Luego se reemplaza por lo que Se observa en la gráfica M ( + X) - ( - X) = 30º 2X=30º X (- X) X = 15°
Problema Nº 06 Se tiene los ángulos consecutivos AOB, BOC y COD tal que la mAOC = mBOD = 90°. Calcule la medida del ángulo formado por las bisectrices de los ángulos AOB y COD. RESOLUCIÓN Construcción de la gráfica según el enunciado De la figura: A C M N B D 2 + = 90° ( + ) + 2 = 90° X 2 + 2 + 2 = 180° + + = 90° X = + + X = 90°
Problema Nº 07 Si m // n . Calcule la medida del ángulo “X” 80° 30° X m n
Propiedad del cuadrilátero RESOLUCIÓN 80° 30° X m n Por la propiedad 80° = + + X (2) 2 + 2 = 80° + 30° Reemplazando (1) en (2) + = 55° (1) 80° = 55° + X Propiedad del cuadrilátero cóncavo X = 25°
Problema Nº 08 Si m // n . Calcular la medida del ángulo “X” 5 4 65° X m n
RESOLUCIÓN 5 4 65° X m n 40° 65° Por la propiedad: Ángulo exterior del triángulo 4 + 5 = 90° X = 40° + 65° = 10° X = 105°
Problema Nº 01 Si m // n . Calcule la medida del ángulo ”X” 2 x m n 2
X = 60° 3 + 3 = 180° + = 60° X = + RESOLUCIÓN x x m 2 2 Ángulos conjugados internos Ángulos entre líneas poligonales 3 + 3 = 180° + = 60° X = 60° X = +
PROBLEMAS PROPUESTOS DE ANGULOS ENTRE PARALELAS
PROBLEMA 01.- Si L1 // L2 . Calcule la m x 4x 3x L1 L2 A) 10° B) 20° C) 30° D) 40° E) 50°
PROBLEMA 02.- Si m // n . Calcule la m x 30° X A) 18° B) 20° C) 30° D) 36° E) 48°
PROBLEMA 03.- Si m // n . Calcule la m 3 m n A) 15° B) 22° C) 27° D) 38° E) 45°
PROBLEMA 04.- Si m // n . Calcule el valor de “x” 40° 95° 2x m n A) 10° B) 15° C) 20° D) 25° E) 30°
x PROBLEMA 05.- Calcule la m x 3 6 A) 99° B) 100° C) 105° D) 110° E) 120°
4 4 PROBLEMA 06.- Si m // n . Calcule la m x m n X A) 22° B) 28° C) 30° D) 36° E) 60°
x PROBLEMA 07.- Si. Calcule la m x m 88° 24° n A) 24° B) 25° C) 32° D) 35° E) 45°
PROBLEMA 08.- Si m // n . Calcule la m x 20° 30° X m n A) 50° B) 60° C) 70° D) 80° E) 30°
PROBLEMA 09.-Si m//n y - = 80°. Calcule la mx A) 60° B) 65° C) 70° D) 75° E) 80°
x PROBLEMA 10.- Si m // n . Calcule la m x m n A) 20° B) 30° C) 40° D) 50° E) 60°
PROBLEMA 11.- Si m // n . Calcule la m m 2 180°-2 n A) 46° B) 48° C) 50° D) 55° E) 60°
PROBLEMA 12.- Si m // n . Calcule la m x x 80° m n A) 30° B) 36° C) 40° D) 45° E) 50°
PROBLEMA 13.- Si m // n . Calcule la m x 80° m n x A) 30° B) 40° C) 50° D) 60° E) 70°
REPUESTAS DE LOS PROBLEMAS PROPUESTOS 20º 8. 50º 30º 9. 80º 45º 10. 30º 10º 11. 60º 120º 12. 40º 36º 13. 50º 7. 32º