Cálculos hemodinámicos y oximétricos

Slides:



Advertisements
Presentaciones similares
Circulación Mayor y Menor. Hemodinámica de la circulación
Advertisements

Ecocardiografía: (o ecocardiograma) ¿Qué es la ecocardiografía
Balón de Contrapulsación Aórtica Eugene Yevstratov MD
Cardiopatías congenitas I
INTRODUCCIÓN Uso del ultrasonido para el estudio del corazón.
Universidad de Costa Rica
La bomba cardiaca: ciclo cardiaco Capítulo 22
CAPACIDAD CARDIOVASCULAR Y RESPIRATORIA
CAPACIDAD CARDIOVASCULAR Y RESPIRATORIA DRA. LOURDES DE LA TORRE.
El sistema cardiovascular I
Anatomía Coronaria Dr. Ricardo Gutiérrez Leal
GENERALIDADES En anatomía, el corazón (de un derivado popular del latín cor, cordis) es el órgano principal del aparato circulatorio.
Sistema circulatorio.
Alejandro Rodríguez Vilela Tutor: Miriam Piñeiro
Válvulas y Cámaras del corazón
Insuficiencia Cardíaca
PROBLEMAS CARDIOVASCULARES
Respuesta cardiovascular al ejercicio
Sistema circulatorio humano
Ecocardiograma doppler
CIRCULACION CORONARIA
Tema 1.3:Transporte de O2 y CO2 en la sangre y los líquidos tisulares.
Calcio ATP.
4.4 Requerimientos de Ancho de Banda para medición
Estudio angiográfico de las arterias coronarias
DRA. ELIZABETH REAL NOH CARDIOLOGIA HCRM
FISIOLOGÍA DEL EJERCICIO
GASTO CARDIACO.
CIRCULACION TRANSICIONAL
TOXICOLOGÍA DEL SISTEMA CARDIOVASCULAR Guzmán, Saúl.
EL SISTEMA CARDIOVASCULAR
DR. LUÍS RAÚL MARTÍNEZ GONZÁLEZ
Biometodología Sistema Cardiocirculatorio 22/02/2010.
Función Diastólica Fisiología y Fisiopatología
SISTEMA CARDIOVASCULAR
ANOMALIAS CONGENITAS DE CORAZON Y GRANDES VASOS
FISIOLOGIA CARDIACA UNIDAD DE CUIDADOS INTENSIVOS.
INSUFICIENCIA CARDÍACA
FISIOLOGIA HUMANA SISTEMA CARDIOVASCULAR-LEY DE STARLING
García Miranda Víctor Alejandro
Malformaciones cardíacas I
Es la fuerza que ejerce las sangre sobre las paredes de las arterias. Se da por dos factores que son: - Caudal sanguineo o volumen sanguineo - -resistencia.
Karen I. Soto, PhD. Sistema Vascular.
SISTEMA VASCULAR.
FISIOLOGIA HUMANA SISTEMA CARDIOVASCULAR-LEY DE STARLING
Cardiopatías Congénitas
Depto. Cardiología, Facultad de Medicina, UAG
Fisiología Cardiovascular
Gasto cardíaco: técnicas de medición núcleo de ingeniería biomédica facultades de ingeniería y medicina universidad de la república.
Sistema cardiovascular
FISIOLOGIA CARDIOVASCULAR
Sistema circulatorio.
SISTEMA CARDIOVASCULAR
Corazón, arterias y venas y salud
Sistema Cardiovascular
Cardiopatías Congénitas: No cianóticas
Sistema circulatorio humano
APLICACIONES DEL CÁLCULO Mariana Pinedo del Barrio Grupo 9Abril de 2005.
Fisiopatología de la insuficiencia cardiaca
El SISTEMA CIRCULATORIO
VENTILACIÓN Y CIRCULACIÓN PULMONAR
Dr. Juan Pablo Carrizales Luna Residente de 2do año de medicina interna Programa multicéntrico de residencias médicas TecSalud/SSNL.
Las cardiopatías congénitas son anomalías o alteración en la estructura del corazón o sus válvulas que está presente desde el nacimiento.  Una de las.
FISIOLOGÍA CARDÍACA.
Dra. Judith Izquierdo Vega Medicina Interna ECOCARDIOGRAFIA.
Elevación y disminución patológica del gasto cardiaco
Cardiovascular Berne Levy 4 edición Capítulos 15 al 26 incluído Capítulo 17 no electrocardiograma Capítulo 20 Repasar Capítulo 21 No la medida de la presión.
Transcripción de la presentación:

Cálculos hemodinámicos y oximétricos Dr Ricardo Gutiérrez Leal Residente de Hemodinamia CMN 20 de noviembre ISSSTE Servicio de Hemodinamia y Cardiología Intervencionista

Introducción El mantenimiento del FS en proporción a las necesidades metábolicas del cuerpo es un requerimiento fundamental para la vida humana. En ausencia de enfermedad mayor de la vasculatura arterial el mantenimiento del FS apropiado para el cuerpo depende de la habilidad del corazón como bomba

La mayoría de cálculos involucran a menudo la evaluación de: Gasto Cardiaco Resistencias vasculares Áreas valvulares Cortocircuito

Gasto Cardiaco Es la cantidad de sangre liberada a la circulación sistémica en una unidad de tiempo. Se expresa en L/min

Factores que influencian el GC Superficie corporal. (0.007184xpesoxestatura) Edad Postura Temperatura corporal Ansiedad Calor ambiental y la humedad

Técnicas: Método de Fick Termodilución

Consumo de O2 ml/min Medido Estimado 3ml O2/Kg 125ml/min/m2

Diferencia arteriovenosa de oxígeno AVo2 Calculada de la diferencia de contenido O2 muestra arterial-muestra venosa. Contenido de O2= saturaciónx1.36xHbx10

GC= consumo de O2 ml/min dif AVo2ml O2/100x10 Índice Cardiaco L/min/m2 IC= GC (L/min) ASC (m2)

Volumen Latido ml/Lat VL= GC (ml/min) FC (lpm) Volumen Sistólico Indexado ml/lat/m2 VI= VS (ml/lat) ASC (m2)

Medición clínica de las resistencias vasculares El Físico Francés Jean Léonard Marie Poiseuille. Formulo en 1846 una serie de ecuaciones para describir el flujo a travéz de un tubo cilíndrico.

Ley de Poiseuille Q= (Pi-Po) r4 8nl Q volumen del flujo Pi-Po presión de entrada-presión de salida r4 radio del tubo l longitud del tubo n viscosidad del fluido

Uso clínico de las resistencias vasculares Los cambios en la longitud del lecho vascular son poco comunes después del crecimiento. Los cambios en las resistencias vasculares reflejan ya sea alteración de la viscosidad de la sangre o cambios en el área seccional del lecho vascular.

Resistencias Vasculares Sistémicas Hipotensión o bajo GC provocan incremento por los baroreceptores. Vías neurales alfa adrenérgicas.

Bajas resistencias vasculares pueden ser vistas en condiciones en las que el FS es anormalmente alto: Fístula arteriovenosa Anemia

Resistencias vasculares pulmonares Es lo más preciso en la evaluación y grado de enfermedad vascular pulmonar. Vasculatura pulmonar es un sistema dinámico sujeto a algunos cambios mecánicos, neurales y bioquímicos

Pueden ser incrementadas: Hipoxia, Hipercapnia, Tono simpático incrementado Policitemia Liberación local de serotonina Obstrucción mecánica Edema pulmonar precapilar Compresión pulmonar

RAP: PMAP-PMAI (PCP) GC RPT: presión arterial pulmonar media

RVS: PAMS-PAMD GC Convertir resistencias a unidades métricas RAP, RPT, RVS unidadesx80

Resistencias Vasculares

Valores normales para las resistencias vasculares Resistencias vasculares sistémicas 1,170 + 270 dynes-sec-cm -5 Resistencias vasculares sistémicas 2,130+450 dynes-sec-cm-5. M2 indexadas Resistencias vasculares pulmonares 67 +30 dynes-sec-cm-5 Resistencias vasculares pulmonares 123+ 54 dynes-sec-cm-5. M2

Cálculo del área valvular Fórmula de Gorlin. Ley de Torriceli’s F= AVCc A= F VCc F flujo A área del orificio V velocidad del flujo Cc coeficiente de contracción del orificio

Segundo principio. Gradiente de presión y velocidad de flujo V2= (Cv)2.2gh V= (Cv) 2gh 980cm/seg2 Convertir cm H2O en unidades de presión

F (C) (44.3) h A= GC/ (PLLD o PES)(FC) 44.3C Δ P

Cálculo del área valvular Área (cm2)= flujo valvular (ml/seg) K x C x MVG MVG es el gradiente valvular medio en mmHg K es 44.3 es una constante derivada de la fórmula de Gorlin y Gorlin C es una constante empírica de 1 para válvulas semilunares y 0.85 para AV.

Gasto cardiaco (ml/min) Período eyección sistólica (seg/min) Flujo válvula aórtica Gasto cardiaco (ml/min) Período eyección sistólica (seg/min)

Gasto cardiaco (ml/min) Período de llenado diastólico (seg/min) Flujo válvula mitral Gasto cardiaco (ml/min) Período de llenado diastólico (seg/min)

Detección y cuantificación de cortocircuitos Detección, localización y cuantificación de los cortocircuitos intracardiacos son una parte integral de la evaluación hemodinámica de los pacientes con cardiopatía congénita.

Un cortocircuito es una comunicación anormal. El flujo sanguíneo a través del cortocircuito puede ser: Izquierda a derecha Derecha a izquierda Bidireccional

El cortocircuito de izquierda a derecha, incrementa el flujo sanguíneo en las cavidades derechas y arteria pulmonar. El cortocircuito de derecha a izquierda, incrementa el flujo sanguíneo sistémico en relación al flujo pulmonar.

Para evaluar los cortocircuitos, existe 4 métodos: Oximetría Curvas de dilución de verde indocianina Angiografía Trazadores radiactivos.

Carrera Oximétrica: Rama pulmonar izquierda y derecha Arteria pulmonar Ventrículo derecho, TSVD Ventrículo derecho, medio Ventrículo derecho, vt o ápex Aurícula derecha, baja o cerca de la vt Aurícula derecha media Aurícula derecha alta

9. VCS baja unión con la AD 10. VCS alta cerca unión con la VI 11. VCI alta, justo abajo del diafragma 12. VCI baja a nivel de L4-L5 13. Ventrículo izquierdo 14. Aorta, distal a la inserción del ductus

Para determinar el sitio del cortocircuito debe realizarse una carrera oximétrica secuencial, obtenida en un lapso menor a 7 min. Un incremento de oxígeno en cavidad o vaso derechos, en relación a la cavidad que le antecede sugiere el sitio del cortocircuito de izquierda a derecha. La desaturación de sangre arterial sugiere el sitio del cortocircuito de derecha a izquierda.

Cortocircuitos intracardiacos LOCALIZACIÓN SITIO DE CONTAMINACIÓN Drenaje anómalo parcial de venas pulmonares Aurícula derecha. Defecto septal auricular Primum (bajo) AD-VD Secundum (medio) AD Seno venoso (alto) AD Defecto septal ventricular Membranoso (alto) VD Muscular (medio) VD Apical (bajo) VD

Cortocircuitos extracardiacos LOCALIZACIÓN SITIO DE CONTAMINACIÓN Ventana AP AP PCA AP

Comunicación Interauricular SALTO OXIMÉTRICO EN AURICULA DERECHA: Ostium primum (AD baja y VD) Ostium secundum (AD media) Seno venoso (AD alta) Drenaje anómalo parcial de venas pulmonares (AD)

Comunicación Interventricular SALTO OXIMÉTRICO EN VENTRICULO DERECHO: Septum membranoso (VD alto). Septum muscular (VD medio) Apical (VD bajo)

SALTO OXIMÉTRICO EN ARTERIA PULMONAR: Persistencia del conducto arterioso (rama derecha de la arteria pulmonar) Ventana aortopulmonar

Criterios para determinar un salto oximétrico significativo NIVEL DEL CORTO CIRCUITO PROMEDIO DE LAS MUESTRAS DE LA CÁMARA DISTAL PROMEDIO DE LAS MUESTRAS DE LA CÁMARA PROXIMAL MAYOR VALOR EN LA CÁMARA DISTAL MAYOR VALOR EN LA CÁMARA PROXIMAL QP/QS MÌNIMO REQUERIDO PARA LA DETECCIÓN POSIBLES CAUSAS VOL% O2 Sat% O2 Vol% O2 AURICULA (VCS a AD) > o = 1.3 > o = 7 > o = 2.0 > o = 11 1.5 – 1.9 CIA, DVPA, seno de Valsalva roto. CIV +IT, fistula coronaria a AD VENTRICULO (AD – VD) > o = 1.0 > o = 5 > o = 1.7 > o = 10 1.3 – 1.5 CIV, PCA + IP, CIA-OP, fistula coronaria a VD PULMONAR (VD - AP) < o = 1.0 1.3 PCA, ventana Ao-P, origen anòmalo de una arteria coronaria

Cálculo del cortocircuito Para determinar el cortocircuito debe medirse el gasto sistémico (QS) y gasto pulmonar (QP) por método de Fick. Gasto sistémico (L/min) = consumo de O2 (ml/min) / 10 x diferencia de O2 arterial – sangre venosa mezclada (vol%). Gasto pulmonar (L/min) = consumo de O2 (ml/min) / 10 x diferencia de O2 de vena pulmonar – arteria pulmonar (vol%).

En presencia de cortocircuito la sangre venosa mezclada, se obtiene de la cavidad o vaso previo al salto oximétrico. En el caso de CIA la mezcla venosa se obtiene de la siguiente forma: 3 VCS + 1 VCI / 4

Determinación del cortocircuito De izquierda a derecha = QP-QS (L/min) De derecha a izquierda = QS – QS efectivo (L/min) QS la muestra arterial se obtiene de la vena pulmonar. QS efectivo, la muestra arterial se obtiene de la aorta o arteria periférica. Bidireccional= I-D = QP (cont de O2 de sangre VM – cont O2 AP) / (cont de O2 de sangre VM – cont O2 VP). D-I = QP (cont O2 VP – con O2 humeral)(cont O2 AP – cont O2 VP) / (cont de O2 humeral – cont O2 sangre VM)(cont O2 sangre VM – cont O2 VP).

En presencia de cortocircuito de izquierda a derecha, la fórmula simplificada para obtener la relación QP/QS es: QP/QS = SAO2 – MVO2 / PVO2 – PAO2 SAO2 = saturación de oxigeno de arteria sistémica. MVO2 = saturación de oxígeno de sangre venosa mezclada. PVO2 = saturación de oxígeno de vena pulmonar PAO2 = saturación de oxígeno de arteria pulmonar.

En un cortocircuito de izquierda a derecha, el gasto pulmonar efectivo está incrementado y se determina de la siguiente manera: Gasto pulmonar efectivo = gasto sistémico + flujo del cortocircuito En cortocircuito de derecha a izquierda el gasto pulmonar efectivo está disminuido y se determina de la siguiente manera: Gasto pulmonar efectivo = gasto sistémico – flujo del cortocircuito.