Instituto Nacional de Astrofísica, Óptica y Electrónica INAOE
Propedéutico de la coordinación de Óptica
Teoría electromagnética
Teoría electromagnética La carga eléctrica El campo eléctrico El potencial eléctrico La ley de Gauss La capacitancia y la corriente eléctrica Los campos eléctricos en la materia El campo magnético Los campos magnéticos en la materia La ley de Ampere La inducción y la inductancia Las ecuaciones de Maxwell Las ondas electromagnéticas
La teoría electromagnética VI. Los campos eléctricos en la materia 1. Los conductores, los semiconductores y los dieléctricos 2. La polarización 3. Generalización de la ley de Gauss 4. Campo producido por un dieléctrico polarizado 5. Las condiciones de frontera en los dieléctricos 6. La energía del campo electrostático en los medios materiales
un dieléctrico polarizado Campo producido por un dieléctrico polarizado Reitz Milford, seccion 4.1, 4.2 y 4.3
Los dieléctricos No polares Polares Las moléculas que forman el sólido no tienen un momento dipolar permanente Polares Las moléculas que forman el sólido tienen un momento dipolar permanente
Molécula polar - + + Agua
El campo eléctrico en la materia La electrostática de los medios materiales Los dieléctricos sí producen campos. Sus cargas están ligadas. No podemos hacer nada con ellas. El campo polariza el material. Esa polarización modifica el campo, que a su vez vuelve a cambiar la polarización. Y así sucesivamente hasta que se llega a un equilibrio. Los dieléctricos se polarizan
Campo producido por un dieléctrico polarizado
un dieléctrico polarizado. Campo producido por un dieléctrico polarizado. Fuera del dieléctrico Reitz Milford, seccion 4.1, 4.2 y 4.3
Campo producido por un dieléctrico polarizado Fundamentos de la teoría electromagnética, cuarta edición. Reitz, Milford & Christy Capítulo 4 Sección 4.3 Página 103
Campo producido por un dieléctrico polarizado
Campo producido por un dieléctrico polarizado
Campo producido por un dieléctrico polarizado
Campo producido por un dieléctrico polarizado
Campo producido por un dieléctrico polarizado
Campo producido por un dieléctrico polarizado
Campo producido por un dieléctrico polarizado
Campo producido por un dieléctrico polarizado
un dieléctrico polarizado. Dentro del dieléctrico Campo producido por un dieléctrico polarizado. Dentro del dieléctrico Reitz Milford, seccion 4.1, 4.2 y 4.3
un dieléctrico polarizado. Dentro del dieléctrico Campo producido por un dieléctrico polarizado. Dentro del dieléctrico Campos altamente variables Campos macroscópicos promedios Reitz Milford, seccion 4.1, 4.2 y 4.3
Campo producido por un dieléctrico polarizado
Campo producido por un dieléctrico polarizado
Campo producido por un dieléctrico polarizado
Campo producido por un dieléctrico polarizado
Campo producido por un dieléctrico polarizado
Campo producido por un dieléctrico polarizado
Campo producido por un dieléctrico polarizado
Campo producido por un dieléctrico polarizado
Campo producido por un dieléctrico polarizado
Campo producido por un dieléctrico polarizado
La carga de polarización
La carga de polarización
Interpretación de las cargas de polarización
Interpretación de las cargas de polarización
Flujo de la carga de polarización
La carga de polarización
La carga de polarización
La carga de polarización
La carga de polarización
La generalización de la ley de Gauss
La ley de Gauss
Ley de Gauss
La generalización de la ley de Gauss Dieléctrico
La generalización de la ley de Gauss Dieléctrico
La generalización de la ley de Gauss Dieléctrico
La generalización de la ley de Gauss Dieléctrico
La generalización de la ley de Gauss
La generalización de la ley de Gauss
La generalización de la ley de Gauss
La generalización de la ley de Gauss
El vector de desplazamiento eléctrico
La generalización de la ley de Gauss
Las ecuaciones de Maxwell para los medios materiales
Las ecuaciones de Maxwell para los medios materiales
Los dieléctricos
Tipos de dieléctricos según su polarización Ferroeléctricos Son los materiales que tienen una polarización neta (Electretos) o que cuando los pones en un campo mantienen la polarización, una vez retirado el campo No-ferroeléctricos Cuando se retira el campo la polarización vuelve a cero
Materiales NO-ferroeléctricos
Sólidos cristalinos Alótropos del Carbono
Materiales no-ferroeléctricos + isotrópicos (todas las direcciones son iguales)
Materiales no-ferroeléctricos, isotrópicos + lineales
Material no-ferroeléctrico, isotrópico y lineal
Material no-ferroeléctrico, isotrópico, lineal + homogeneo
Los dieléctricos
Los dieléctricos
Los dieléctricos
La constante dieléctrica
La constante dieléctrica
La constante dieléctrica
La constante dieléctrica
Las ecuaciones de Maxwell para la electrostática en los medios materiales
Las ecuaciones de Maxwell para la electrostática en los medios materiales
Las ecuaciones de Maxwell para la electrostática en un dieléctrico isotrópico, lineal y homogéneo
Las ecuaciones de Maxwell para la electrostática en un dieléctrico isotrópico, lineal y homogéneo
Las condiciones en la frontera de los dieléctricos
Las ecuaciones de Maxwell para la electrostática en los m|edios materiales
Condiciones de frontera
Condiciones de frontera. Material isotrópico y lineal
Condiciones de frontera
Las condiciones de frontera en los materiales
La energía del campo electrostático en los medios materiales
La energía del campo electrostático en los medios materiales
La energía del campo electrostático en los medios materiales
Los dieléctricos
La permitividad eléctrica In electromagnetism, permittivity or absolute permittivity, usually denoted by the Greek letter ε (epsilon), is the measure of resistance that is encountered when forming an electric field in a particular medium. More specifically, permittivity describes the amount of charge needed to generate one unit of electric flux in a particular medium. Accordingly, a charge will yield more electric flux in a medium with low permittivity than in a medium with high permittivity. Thus, permittivity is the measure of a material's ability to resist an electric field, not its ability to ‘permit’ it (as the name ‘permittivity’ might seem to suggest). The permittivity of a dielectric medium is often represented by the ratio of its absolute permittivity to the electric constant. This dimensionless quantity is called the medium’s relative permittivity (εr) or dielectric constant (κ). https://en.wikipedia.org/wiki/Permittivity
La permitividad eléctrica: Medición The dielectric constant of a material can be found by a variety of static electrical measurements. The complex permittivity is evaluated over a wide range of frequencies by using different variants of dielectric spectroscopy, covering nearly 21 orders of magnitude from 10−6 to 1015 hertz. Also, by using cryostats and ovens, the dielectric properties of a medium can be characterized over an array of temperatures. In order to study systems for such diverse excitation fields, a number of measurement setups are used, each adequate for a special frequency range. Various microwave measurement techniques are outlined in Chen et al.. Typical errors for the Hakki-Coleman method employing a puck of material between conducting planes are about 0.3%.[15] Low-frequency time domain measurements (10−6 to 103 Hz) Low-frequency frequency domain measurements (10−5 to 106 Hz) Reflective coaxial methods (106 to 1010 Hz) Transmission coaxial method (108 to 1011 Hz) Quasi-optical methods (109 to 1010 Hz) Terahertz time-domain spectroscopy (1011 to 1013 Hz) Fourier-transform methods (1011 to 1015 Hz) At infrared and optical frequencies, a common technique is ellipsometry. Dual polarisation interferometry is also used to measure the complex refractive index for very thin films at optical frequencies. https://en.wikipedia.org/wiki/Permittivity#Measurement