TEOREMA DE PITÁGORAS.

Slides:



Advertisements
Presentaciones similares
Para los alumnos de Segundo Medio
Advertisements

Teorema de Thales.
SEMEJANZA.
PROFESORA: GLADYS ZORRILLA
TEOREMA DE TALES Si un conjunto de rectas paralelas corta a dos rectas secantes, los segmentos determinados por las paralelas en una de las secantes, son.
Congruencias y semejanzas de figuras planas
Teorema de Thales Esta presentación fue pensada y creada como un apoyo para los alumnos que necesitan aclarar ideas relacionadas con este teorema Prof.:
Teorema de Thales MÓDULO 22
SEMEJANZA Y PROPORCIONALIDAD
SEMEJANZA Y CONGRUENCIA
Geometría de proporción
Teorema de Thales Profesor: Reynaldo Flores Troncos.
Actividad Gráficos sistemas de ecuaciones Visitar Sector matemática  Segundo medio.
Geometría de Proporción
Tema: Semejanza “Criterios de semejanza de triángulos”
Geometría de Proporción
TEOREMA DE THALES APM.
Geometría de Proporción
SEMEJANZA DE TRIANGULOS
Semejanza de Triángulos
Teorema de Tales de Mileto
Apuntes de Matemáticas 2º ESO
Congruencia y semejanza de triángulos
Esta presentación nos aclara como utilizar este famoso teorema
Para mis alumnos de 4º B En esta presentación encontrarás :
SEMEJANZA DE TRIÁNGULOS
Geometría de Proporción
TEOREMA DE THALES ESPAD III * TC 22.
SEMEJANZA.
Congruencias y semejanzas de figuras planas
5 Semejanzas Las transformaciones que mantienen la forma y las proporciones se llaman semejanzas. LECTURA INICIAL ESQUEMA INTERNET ACTIVIDAD.
Congruencias y semejanzas de figuras planas
Congruencias y semejanzas de figuras planas
Teorema de Thales I° medio 2015.
TEOREMAS DE SEMEJANZA TEOREMA DE THALES ..
SEMEJANZA DE TRIÁNGULOS
INICIOESQUEMA INTERNETACTIVIDAD MATEMÁTICAS 4º ESO opción B Unidad 5: Semejanzas ANTERIOR SALIR 5 Semejanza INTERNET LECTURA INICIAL ESQUEMA ACTIVIDAD.
@ Angel Prieto BenitoMatemáticas 4º ESO E. AC.1 U. D. 8 * 4º ESO E. AC. SEMEJANZA.
Criterios de semejanza de triángulos Obj: Identificar y aplicar los criterios de semejanza de triángulos.
Propiedad Intelectual Cpech ACOMPAÑAMIENTO ANUAL BLOQUE 21 Criterios de congruencia de triángulos PPTCAC035MT21-A16V1.
Geometría de Proporción I. Geometría de Proporción II.
En triángulos semejantes, dos lados homólogos están en la misma razón que dos trazos homólogos cualesquiera y también están en la misma razón que sus perímetros.
Clase Proporcionalidad y semejanza I° Ciclo Prof. María José Lascani.
U.D. 9 * 2º ESO FIGURAS SEMEJANTES
Geometría.
Más que un polígono de tres lados...
TEOREMA DE THALES ..
GEOMETRIA PROPORCIONAL II
U.D. 9 * 2º ESO FIGURAS SEMEJANTES
EQUIVALENCIAS Dos figuras son equivalentes cuando tienen la misma superficie.
GEOMETRIA PROPORCIONAL I
Semejanza de triángulos
CONGRUENCIA DE TRIÁNGULOS
SEMEJANZA U. D. 8 * 4º ESO E. Angel Prieto Benito
SEMEJANZA U. D. 7 * 4º ESO E. Angel Prieto Benito
Semejanza.
1. Figuras congruentes ( )
SEMEJANZA U. D. 7 * 4º ESO E. Angel Prieto Benito
Congruencias y semejanzas de figuras planas
SEMEJANZA Y CONGRUENCIA DE POLÍGONOS
Teorema de Thales Esta presentación fue pensada y creada como un apoyo para los alumnos que necesitan aclarar ideas relacionadas con este teorema.
Dos figuras que tienen la misma forma, aun con diferentes dimensiones, se llaman semejantes. Dos figuras son semejantes si sus ángulos correspondientes.
Apuntes de Matemáticas 3º ESO
Recuerdo: “Dos figuras son semejantes cuando la razón entre las medidas de sus lados homólogos (correspondientes) es constante, es decir son proporcionales.
PPTCCO035MT11-A17V1 Clase Teorema de Thales y división de segmentos MT-11.
Teorema de Thales. Nació : alrededor del año 640 AC en Mileto, Asia Menor (ahora Turquía) Thales era considerado uno de los siete sabios de Grecia Algunos.
TRIÁNGULOS.
SEMEJANZA DE TRIANGULOS. Dos triángulos son semejantes cuando tienen sus ángulos iguales (o congruentes) y sus lados correspondientes (u homólogos) son.
CRITERIOS DE SEMEJANZA DE TRIÁNGULOS NIVEL: I° MEDIO DEPARTAMENTO DE MATEMÁTICA.
Transcripción de la presentación:

TEOREMA DE PITÁGORAS

c a b a² + b² = c² La suma de los cuadrados de los catetos es igual al cuadrado de la hipotenusa

TRÍOS PITAGÓRICOS Los tríos más usados en ejercicios son: CATETO (A) CATETO (B) HIPOTENUSA (C) 3 4 5 6 8 10 9 12 15 5 12 13 A² + B² = C²

Un ejemplo: El anuncio sobre la venta de un monitor para computadora de 25 pulgadas que esta en promoción me llamó la atención, pero al llegar a la tienda y revisar las medidas del monitor resultó que mide 19.5 pulg de ancho y 15.5 pulg de altura. ¿Acaso la publicidad me engaño? 19.5’’ 15.5’’ 25’’ PRIMER PASO 19.5’’ 15.5’’

Según el teorema de Pitágoras: La diagonal = hipotenusa = SEGUNDO PASO Según el teorema de Pitágoras: La diagonal = hipotenusa = TERCER PASO La diagonal = hipotenusa = 24.9 pulg CONCLUSIÓN: Los fabricantes se refieren a la longitud de la diagonal de la pantalla que efectivamente mide 25 pulgadas.

Teorema de Thales Algunos datos Nació : alrededor del año 640 AC en Mileto, Asia Menor (ahora Turquía) Thales era un hombre que se destacó en varia áreas : comerciante, hábil en ingeniería, astrónomo, geómetra Thales era considerado uno de los siete sabios de Grecia

Se cuenta que comparando la sombra de un bastón y la sombra de las pirámides, Thales midió, por semejanza, sus alturas respectivas. La proporcionalidad entre los segmentos que las rectas paralelas determinan en otras rectas dio lugar a lo que hoy se conoce como el teorema de Thales.

Ahora El famoso teorema

EL TEOREMA DE TALES EN UN TRIÁNGULO Dado un triángulo ABC, si se traza un segmento paralelo B’C’, a uno de los lados del triángulo se obtiene otro triángulo AB’C’, cuyos lados son proporcionales a los del triángulo ABC. B’ C’ B C A Los segmentos son proporcionales.

H(altura de la pirámide) H h = s S h•S H= s Puesto que los rayos del Sol inciden paralelamente sobre la Tierra los triángulos rectángulos determinados por la altura de la pirámide y su sombra Rayos solares y el determinado por la altura del bastón y la suya son semejantes Podemos, por tanto, establecer la proporción S (sombra) H(altura de la pirámide) H h = s S h•S H= De donde s s (sombra) h (altura de bastón) Pirámide

los segmentos a, b, c y d son proporcionales "Si tres o más rectas paralelas son intersecadas por dos transversales, los segmentos de las transversales determinados por las paralelas, son proporcionales En el dibujo: Si L1 // L2 // L3 , T y S transversales, los segmentos a, b, c y d son proporcionales T S Es decir: L1 c a = L2 b d ¿DE ACUERDO? L3

Un ejemplo: En la figura L1 // L2 // L3 , T y S transversales, calcula la medida del trazo x 8 24 x 15 Ordenamos los datos en la proporción, de acuerdo al teorema de Thales X 15 Es decir: 8 = 24 Y resolvemos la proporción 24 • x = 8 • 15 Fácil X =8 • 15 24 X = 5

Otro ejemplo: en la figura L1 // L2 // L3 , T y S son transversales, calcula x y el trazo CD Formamos la proporción 3 x+4 = x+1 2 Resolvemos la proporción 3(x + 1) = 2(x + 4) 3x + 3 = 2x + 8 3x - 2x= 8 - 3 X=5 Luego, como CD = x + 4 CD= 5 + 4 = 9

Y nuevamente pensando en la pirámide….. TRIÁNGULOS DE  THALES Dos triángulos se dicen de Thales o que están en posición de Thales, cuando: Tienen un ángulo común y los lados opuestos a dicho ángulo son paralelos.   S (sombra) H(altura de la pirámide) Podemos ver esto si trasladamos el triángulo formado por el bastón, su sombra y los rayos solares hacia el formado por la pirámide s (sombra) h (altura de bastón)

A esta forma de tomar los trazos, se le llama “la doble L” Triángulos de Thales En dos triángulos de Thales, sus lados, tienen la misma razón  de semejanza  B C A D E AE AB AB AE De acuerdo a esto, en la figura BC// ED, entonces, con los lados de los triángulos AED y ABC ocurre: ED = BC ED O también = BC A esta forma de tomar los trazos, se le llama “la doble L”

Aplicaciones de esta idea Calcula la altura del siguiente edificio x x 5 3 12 Escribimos la proporción Por que 3+12=15 3 15 = 5 Y resolvemos la proporción 3 • x = 5 • 15 x = 75 3 X = 25

Otro ejercicio En el triángulo ABC, DE//BC , calcule x y el trazo AE Formamos la proporción Por que x+3+x = 2x+3 A B C x+3 x 8 12 D E 8 12 = X+3 2x+3 Resolvemos la proporción 8(2x + 3) = 12( x + 3) 16x + 24 = 12x + 36 16x – 12x = 36 – 24 4x = 12 X = 12 = 3 4 Por lo tanto, si AE = x + 3 = 3 + 3 = 6

otro ejemplo: Encuentra las medidas de los segmentos a y b a = 8 cm b = 3 cm 6 cm 4 cm 2 cm b a

Teorema de Thales a) Forma de Escalera: Si tres o más rectas paralelas son intersectadas por dos transversales, los segmentos determinados por las paralelas son proporcionales. Este teorema tiene tres formas de presentarse: a) Forma de Escalera: Sean L1 // L2 // L3, entonces: C D F E A B L1 L2 L3 AB BC DE EF = BC AC EF DF = AB AC DE DF =

b) Forma de «A» o Teorema Particular de Thales: Sean L1 // L2, entonces: A O C D B L1 L2 OA AB OC CD = OA OB OC OD = AB OB CD OD = OA AC OB BD = OC AC OD BD =

c) Forma de Reloj de Arena: Sean L1 // L2, entonces: L1 L2 A C B O D AO OD BO OC = AB CD AO OD = AB CD BO OC =

1. En la figura, L1 // L2. Determinar el valor del trazo AC. Ejemplos: 1. En la figura, L1 // L2. Determinar el valor del trazo AC. A O C D B L1 L2 5 7 36 Solución: Aplicando el Teorema particular de Thales o «A»: OA AC OB BD =  5 AC 12 36 =  AC = 15

En la figura, L1 // L2. Determinar el trazo OD en función de x e y. B O D x + y 2y 2x Solución: Aplicando la «forma de reloj de arena» del Teorema de Thales: AB CD AO OD =  x+y 2x 2y OD =  4xy x+y OD =

1. Figuras congruentes ( ) 1.1 Definición Dos figuras son congruentes cuando tienen la misma forma, el mismo tamaño y la misma área, es decir, si al colocarlas una sobre la otra son coincidentes en toda su extensión. Ejemplos:

1.2 Triángulos congruentes Para determinar si dos triángulos son congruentes, existen algunos criterios. Los más utilizados son: 1° Lado, lado, lado (L.L.L.) Dos triángulos son congruentes si sus lados correspondientes son congruentes. Ejemplo: A C B D F E 8 8 6 6 10 10 Los triángulos ABC y DEF son congruentes y se denota: Δ ABC Δ DEF

a a 2° Lado, ángulo, lado (L.A.L.) Dos triángulos son congruentes si tienen dos lados respectivamente congruentes y el ángulo comprendido entre ellos congruente. Ejemplo: A B C E F D 3 3 a a 5 5 Los triángulos ABC y DEF son congruentes y se denota: Δ ABC Δ DEF

b b a a 3° Ángulo, lado, ángulo (A.L.A) Dos triángulos son congruentes si tienen dos ángulos respectivamente congruentes y el lado comprendido entre ellos congruente. Ejemplo: A B C E F D b b 12 12 a a Los triángulos ABC y DEF son congruentes y se denota: Δ ABC Δ DEF

2. Figuras Equivalentes Son aquellas que tienen la misma área. Ejemplo: El cuadrado de lado 2√p , es “equivalente” al círculo de radio 2 de la figura: Área = 4p Área = 4p

3. Figuras semejantes (~) 3.1 Definición Para que dos polígonos sean semejantes es necesario que se cumplan dos condiciones: 1° que tengan sus ángulos respectivamente congruentes, y 2° que sus lados homólogos sean proporcionales. Tienen igual forma, pero no necesariamente igual tamaño y área. G F J I H a b g d e A E D C B a b g d e Se llaman “lados homólogos” a los lados que unen dos vértices con ángulos congruentes.

¿Qué elementos determinan la semejanza de las figuras? Dos figuras son semejantes si sus ángulos correspondientes son iguales y sus lados correspondientes proporcionales. Los elementos que se corresponden (puntos, segmentos, ángulos …) se llaman “homólogos”.

Triángulos semejantes Dos triángulos son semejantes si sus ángulos son, respectivamente, iguales y sus lados homólogos son proporcionales.

Dado un triángulo de lados 4m, 5m y 6m. B C 18m 15m 12m P Q R Multiplica cada uno de los lados por 3. x 3 Los lados del triángulo se han triplicado.

Identificamos algunos elementos : B C RAZÓN DE SEMEJANZA : 3 18m 15m 12m P Q R AB BC AC PQ QR PR LADOS HOMÓLOGOS

Criterios de semejanza de triángulos Existen algunos principios que nos permiten determinar si dos triángulos son semejantes sin necesidad de medir y comparar todos sus lados y todos sus ángulos. Estos principios se conocen con el nombre de criterios de semejanza de triángulos

Existen tres criterios de semejanza de triángulos AA ( ángulo-ángulo) LLL (lado-lado-lado) LAL (lado-ángulo-lado)

Primer criterio : AA Dos triángulos que tienen los dos ángulos congruentes son semejantes entre sí. A´ B´ C’ A B C a´ a b´ b g´ g Es decir: Si a = a´ , b = b´ de lo anterior se deduce que g = g´ Entonces, D ABC semejante con D A´B´C´

¡SI! Ejemplo ¿Son los siguientes triángulos semejantes? 65° 25° Q 25° 65° P R 65° 25° A B C ¡SI! Por que al tener dos de sus ángulos congruentes, cumplen con el criterio AA

Segundo criterio: LLL Dos triángulos que tienen los tres lados proporcionales son semejantes entre sí. A´ B´ C’ A B C a a´ El cociente obtenido de comparar los lados homólogos entre sí recibe el nombre de razón de semejanza. Es decir: = b b´ c c´ =K

Ejemplo : Determine si los triángulos ABC y PQR son semejantes A B C P 1,5 3,5 5 P Q R 3 7 10 Verifiquemos si las medidas de los lados son proporcionales 1,5 3 3,5 7 5 10 = = = 0,5 Efectivamente , así es, ya que los productos la razón entre los lados correspondientes es constante Por lo tanto Triángulos ABC y PQR son semejantes por criterio LLL

Tercer criterio:LAL y a = a’ Dos triángulos que tienen dos lados proporcionales y el ángulo comprendido entre ellos es igual, son semejantes entre sí. A’ B’ C’ A B C Es decir: a a’ = c c’ y a = a’ a´ Entonces D ABC semejante a D A’B’C’

Efectivamente así es, ya que los productos “cruzados” son iguales Ejemplo : ¿Son los triángulos ABC y DEF semejantes? Veamos si dos de sus lados son proporcionales A B C 4 3 D E F 9 12 3 4 = 9 12 Efectivamente así es, ya que los productos “cruzados” son iguales 3 • 12 = 4 • 9 Efectivamente, porque, tal como se señala en el dibujo, ambos son rectos ¿Los ángulos formados por estos dos lados son congruentes? Por criterio LAL Triángulos ABC y DEF son SEMEJANTES