1º I.T.I. : MECANICA I Departamento: INGENIERÍA MECÁNICA, ENERGÉTICA Y DE MATERIALES TEMA Nº 6: ESTÁTICA EQUILIBRIO DE CUERPOS RÍGIDOS EQUILIBRIO DE CUERPOS.

Slides:



Advertisements
Presentaciones similares
Departamento: INGENIERÍA MECÁNICA, ENERGÉTICA Y DE MATERIALES
Advertisements

Departamento: INGENIERÍA MECÁNICA, ENERGÉTICA Y DE MATERIALES
Departamento: INGENIERÍA MECÁNICA, ENERGÉTICA Y DE MATERIALES
Departamento: INGENIERÍA MECÁNICA, ENERGÉTICA Y DE MATERIALES
1º I.T.I. : MECANICA I Departamento: INGENIERÍA MECÁNICA, ENERGÉTICA Y DE MATERIALES TEMA Nº 4: ESTÁTICA CUERPOS RÍGIDOS: SISTEMAS EQUIVALENTES FUERZA/MOMENTO.
Departamento: INGENIERÍA MECÁNICA, ENERGÉTICA Y DE MATERIALES
Departamento: INGENIERÍA MECÁNICA, ENERGÉTICA Y DE MATERIALES
Departamento: INGENIERÍA MECÁNICA, ENERGÉTICA Y DE MATERIALES
Departamento: INGENIERÍA MECÁNICA, ENERGÉTICA Y DE MATERIALES
Departamento: INGENIERÍA MECÁNICA, ENERGÉTICA Y DE MATERIALES
SEGUNDA UNIDAD DE COMPETENCIA
Fuerzas en vigas y cables
Dinámica del movimiento circular uniforme Objetivos: 1. Aplicar la Segunda Ley de Newton a l MCU.
ESTÁTICA Y DINÁMICA ESTRUCTURAS
Fuerzas y Leyes de NewtonLeyes. FUERZAS Y Leyes de Newton Una fuerza es toda causa capaz de deformar un cuerpo o modificar su estado de reposo o movimiento.
CENTRO DE MASA Rotación de cuerpos rígidos
POLEAS.  En un sistema formado por varias masas (con dos vamos a trabajar) unidas con una cuerda a una polea.  Ej: Maquina de Atwood. A B.
Armaduras: Una armadura es un montaje de elementos delgados y rectos que soportan cargas principalmente axiales ( de tensión y compresión ) en esos elementos.
Torsión. 5.1 Deformación por torsión de un eje circular El par de torsión es un momento que tiende a torcer un elemento sobre su eje longitudinal. Su.
Introducción a Cinemática y Dinámica.
BUAP-FCE-ISA : FÍSICA I
Departamento: INGENIERÍA MECÁNICA, ENERGÉTICA Y DE MATERIALES
VECTORES.
DINÁMICA Calama, 2016.
SISTEMAS DE PARTÍCULAS.
LOS CAMBIOS DE MOVIMIENTO
Unidad 5. Capítulo VI. Sistemas lineales no homogéneos.
DINÁMICA DEL SÓLIDO RÍGIDO.
1º I.T.I. : MECANICA I Departamento: INGENIERÍA MECÁNICA, ENERGÉTICA Y DE MATERIALES TEMA Nº 10: ESTÁTICA MOMENTOS SEGUNDOS DE SUPERFICIE Y MOMENTOS DE.
Curso de Estabilidad IIb Ing. Gabriel Pujol
ESTÁTICA Jessica Alexandra Rivera.
Fuerzas y Leyes de Newton. FUERZAS Y Leyes de Newton Una fuerza es toda causa capaz de deformar un cuerpo o modificar su estado de reposo o movimiento.
ESTÁTICA. CONCEPTO La estática es obviamente una rama de la mecánica cuyo objetivo es estudiar las condiciones que deben de cumplir las fuerzas que actúan.
ESTÁTICA DEL CUERPO RÍGIDO ACUÑA PAOLA ISLAS KEVIN LEON MANUEL MENDEZ GERARDO SOLIS JOSE.
Rotación de un cuerpo alrededor de un eje fijo
LEYES DE LA DINÁMICA Las leyes de Newton, también conocidas como leyes del movimiento de Newton, son tres principios a partir de los cuales se explican.
TORSIÓN INTRODUCCIÓN La torsión aparece cuando: Cuando el plano de carga no pasa por el centro de corte de la sección Cuando se aplica un momento torsor.
ANÁLISIS DE ESTRUCTURAS ESAQ UNJBG 2017 – I. CONTENIDO 1.OBJETIVOS 2.INTRODUCCIÓN 3.CONSTRUCCIÓN DE ARMADURAS Suposiciones para el diseño de armaduras.
UNIVERSIDAD NACIONAL “SANTIAGO ANTÚNEZ DE MAYOLO” FACULTAD DE INGENIERÍA CIVIL CURSO: FISICA I ESTATICA: EQUILIBRIO DE PARTICULAS Y CUERPOS RIGIDOS AUTOR:
El Movimiento de los cuerpos 2da Unidad
REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA UNEFA.
VECTORES.
Ing. Jorge Luis Paredes Estacio
Desarrollar las ecuaciones de equilibrio para un cuerpo rígido. Presentar el concepto de diagrama de cuerpo libre para un cuerpo rígido Mostrar cómo resolver.
DINÁMICA DE LA PARTÍCULA. DEFINICIÓN DE DINÁMICA Y CINEMÁTICA Dinámica: Estudio del movimiento de un objeto, y de las relaciones de este movimiento con.
HISTORIA
Capítulo 4B. Fricción y equilibrio
Departamento: INGENIERÍA MECÁNICA, ENERGÉTICA Y DE MATERIALES
LEYES DE NEWTON – 1 ERA CONDICIÓN DE EQUILIBRIO Principio de Inercia, Principio de Acción y Reacción.
EL CAMPO GRAVITATORIO TEMA 2 FÍSICA 2º IES SANTA POLA.
Contenido ›Principio del trabajo virtual ›Método del trabajo virtual: Armaduras ›Método del trabajo virtual: vigas y marcos.
Unidad 4 Anexo 1. Capítulo II. Vibraciones mecánicas.
Torca o Momentum de una fuerza
COLEGIO NACIONAL LOPERENA Germán Isaac Sosa Montenegro
VECTORES.
Tema 4.- Estática y rozamiento. Sólido rígido en equilibrio.
Vectores fijos en el plano Vector fijo: Es un segmento orientado, con el sentido del recorrido que va desde el origen al extremo. A B Extremo Origen.
Departamento: INGENIERÍA MECÁNICA, ENERGÉTICA Y DE MATERIALES
Departamento: INGENIERÍA MECÁNICA, ENERGÉTICA Y DE MATERIALES
Torsión. 5.1 Deformación por torsión de un eje circular El par de torsión es un momento que tiende a torcer un elemento sobre su eje longitudinal. Su.
UNIVERSIDAD NACIONAL DE PIURA CURSO: MECANICA DE SUELOS II DOCENTE: MSc. ING. ANTONIO TIMANA FIESTAS. PIURA, ENERO DE 2017.
1 Introducción a la RESISTENCIA DE MATERIALES UNIVERSIDAD NACIONAL DEL CENTRO DEL PERU Facultad de Ciencias Aplicadas Escuela Académica profesional de.
TEMA: Conceptos de resistencia de materiales. DOCENTE: Ing. Maximo Huambachano Martel. ASIGNATURA: Resistencia de Materiales. ALUMNO : José paucar sarango.
Javier Junquera Dinámica de los sistemas de partículas.
FUERZAS Y Leyes de Newton Una fuerza es toda causa capaz de deformar un cuerpo o modificar su estado de reposo o movimiento. Las fuerzas son magnitudes.
ESTÁTICA CLAUDIA RAMÍREZ CAPITULO 5FUERZAS DISTRIBUIDAS: CENTROIDES.
UNIVERSIDAD NACIONAL “SANTIAGO ANTÚNEZ DE MAYOLO” FACULTAD DE INGENIERÍA CIVIL CURSO: FISICA I ESTATICA: EQUILIBRIO DE PARTICULAS Y CUERPOS RIGIDOS AUTOR:
1º I.T.I. : MECANICA I Departamento: INGENIERÍA MECÁNICA, ENERGÉTICA Y DE MATERIALES TEMA Nº 6: ESTÁTICA EQUILIBRIO DE CUERPOS RÍGIDOS EQUILIBRIO DE CUERPOS.
ARMADURAS APOYOS - REACCIONES. TIPOS DE APOYOS.
CABLES. Los cables y las cadenas flexibles combinan resistencia con ligereza y se usan con frecuencia en las estructuras para soportar y transmitir cargas.
Transcripción de la presentación:

1º I.T.I. : MECANICA I Departamento: INGENIERÍA MECÁNICA, ENERGÉTICA Y DE MATERIALES TEMA Nº 6: ESTÁTICA EQUILIBRIO DE CUERPOS RÍGIDOS EQUILIBRIO DE CUERPOS RÍGIDOS

I.T.I 1º: MECANICA I Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Indice  Punto 6.1 Introducción  Punto 6.2 Diagramas de sólido libre  Punto Idealización de apoyos y conexiones bidimensionales  Punto Idealización de apoyos y conexiones tridimensionales  Punto 6.3 Equilibrio en dos dimensiones  Punto Cuerpo de dos fuerzas (miembros de dos fuerzas)  Punto Cuerpo de tres fuerzas (miembros de tres fuerzas)  Punto Reacciones hiperestáticas y ligaduras parciales  Punto Resolución de problemas  Punto 6.4 Equilibrio en tres dimensiones

I.T.I 1º: MECANICA I Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila En el capítulo 4 se vio que, en el caso de un cuerpo rígido, el sistema de fuerzas más general se puede expresar mediante una fuerza resultante R y un par resultante C. Por tanto, para que esté en equilibrio un cuerpo rígido deberán anularse la fuerza resultante R y el par resultante C. 6.1 Introducción Vectorialmente: Escalarmente: Estas últimas ecuaciones son condiciones necesarias para el equilibrio de un cuerpo rígido. Cuando a partir de estas ecuaciones se puedan determinar todas las fuerzas que se ejercen sobre el cuerpo, serán también condiciones suficientes para el equilibrio.

I.T.I 1º: MECANICA I Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Fuerzas exteriores: Fuerza que sobre un cuerpo rígido ejerce otro cuerpo por contacto directo o a distancia. Ej.- Peso - Fuerzas interiores: Fuerzas que mantienen unidas las partículas del cuerpo rígido o, si el cuerpo de interés está compuesto de varias partes, las fuerzas que mantienen unidas dichas partes. Las fuerzas exteriores pueden dividirse a su vez, en fuerzas aplicadas y fuerzas de reacción: - Fuerzas aplicadas: Fuerzas que sobre el cuerpo ejercen agentes exteriores. - Fuerzas de reacción: Fuerzas que sobre el cuerpo ejercen los apoyos y las conexiones. Como las fuerzas interiores son, dos a dos, de igual módulo y recta soporte pero de sentidos opuestos, no tendrán efecto sobre el equilibrio del cuerpo rígido en su conjunto. Por tanto, en este capitulo solo nos ocuparemos de las fuerzas exteriores y de los momentos que esta originan. Las fuerzas y momentos que se ejercen sobre un cuerpo rígido pueden ser exteriores o interiores:

I.T.I 1º: MECANICA I Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Diagramas de sólido libre La mejor manera de identificar todas las fuerzas que se ejercen sobre el cuerpo de interés es seguir el método del diagrama de sólido libre. Este diagrama de sólido libre debe mostrar todas las fuerzas aplicadas y todas las reacciones vinculares que se ejercen sobre el cuerpo. Repasamos de nuevo el procedimiento básico: Primer paso: Decidir qué cuerpo o combinación de cuerpos se va a considerar en el DSL. Segundo paso: Preparar un dibujo o esquema del perfil de este cuerpo aislado o libre. Tercer paso: Seguir con cuidado el contorno del cuerpo libre e identificar todas las fuerzas que ejercen los cuerpos en contacto o en interacción que han sido suprimidos en el proceso de aislamiento. Cuarto paso: Elegir el sistema de ejes de coordenadas a utilizar en la resolución del problema e indicar sus direcciones sobre el DSL.

I.T.I 1º: MECANICA I Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Idealización de apoyos y conexiones bidimensionales A continuación se indican los tipos habituales de apoyos y conexiones utilizados en cuerpos rígidos sometidos a sistemas bidimensionales de fuerzas, junto con las F y M que se utilizan para representar sus acciones sobre el cuerpo rígido en el DSL. A) Atracción gravitatoria Peso de cuerpo W. Recta soporte: pasa por el centro de gravedad del cuerpo y dirigida al centro de la Tierra. B) Hilo, cuerda, cadena o cable flexible Ejerce siempre una fuerza R de tracción sobre el cuerpo. Recta soporte: tangente al hilo, cuerda, cadena o cable flexible en el punto de amarre.

I.T.I 1º: MECANICA I Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila C) Conexión rígida (barra) Puede ejercer sobre el cuerpo una fuerza R de tracción o de compresión. Recta soporte: dirigida según el eje de conexión. D) Bola, rodillo o zapata Pueden ejercer sobre el cuerpo una fuerza R de compresión. Recta soporte: normal a la superficie de apoyo.

I.T.I 1º: MECANICA I Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila E) Superficie lisa (plana o curva) Puede ejercer sobre el cuerpo una fuerza R de compresión. Recta soporte: normal a la superficie lisa en el punto de contacto del cuerpo con la superficie. F) Pasador liso Puede ejercer sobre el cuerpo una fuerza R de módulo R y dirección θ desconocidos. Debido a ello, la fuerza R suele representarse en el DSL mediante sus componentes rectangulares R x y R y.

I.T.I 1º: MECANICA I Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila G) Superficie rugosa Pueden resistir una fuerza tangencial de rozamiento R t así como una fuerza normal de compresión R n. Debido a ello, la fuerza R es de compresión dirigida según un ángulo θ desconocido. La fuerza R suele representarse en el DSL mediante sus componentes rectangulares R n y R t. H) Pasador en una guía lisa Solo puede transmitir una fuerza R perpendicular a las superficies de la guía. Se supondrá un sentido para R en el DSL pudiendo ser hacia abajo y a la izda o hacia arriba y a la dcha.

I.T.I 1º: MECANICA I Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila I) Collar sobre un árbol liso (Conexión con pasador) (Conexión fija-soldada) J) Apoyo fijo (empotramiento) Puede ejercer sobre el cuerpo una fuerza R y un momento M. Como no se conoce ni el módulo ni la dirección de R, esta suele representarse mediante sus componentes rectangulares.

I.T.I 1º: MECANICA I Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila K) Resorte elástico lineal La fuerza R que ejerce el resorte sobre el cuerpo es proporcional a la variación de longitud del resorte. Sentido: dependiendo si el resorte está alargado o acortado. Recta soporte: coincide con el eje del resorte. L) Polea ideal El pasador que conecta una polea ideal con un miembro puede ejercer sobre el cuerpo una fuerza R de módulo y dirección desconocidos. Como el pasador es liso, la tensión T del cable será constante para satisfacer el equilibrio de momentos respecto al eje de la polea.

I.T.I 1º: MECANICA I Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila PROBLEMA 6.1 DSL Dibujar el diagrama de sólido libre de la viga de la figura.

I.T.I 1º: MECANICA I Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila PROBLEMA 6.2 DSL Dibujar el diagrama de sólido libre de la viga de la figura. Despreciar el peso de la viga.

I.T.I 1º: MECANICA I Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila PROBLEMA 6.3 DSL´s Un cilindro se apoya sobre una superficie lisa formada por un plano inclinado y una armadura de dos barras. Dibujar el diagrama de sólido libre para el cilindro, para la armadura de dos barras y para el pasador en C.

I.T.I 1º: MECANICA I Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila PROBLEMA 6.4 DSL´s Dibujar el diagrama de sólido libre para la polea, para el poste AB y la viga CD.

I.T.I 1º: MECANICA I Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila PROBLEMA 6.6 (Pag. 222) Dibujar el diagrama de sólido libre para el cilindro y la barra AB. Incluye el peso de los dos cuerpos y supón lisas todas las superficies.

I.T.I 1º: MECANICA I Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila PROBLEMA 6.7 (Pag. 223) Dibujar el diagrama de sólido libre para la viga AD. Incluye el peso de la viga.

I.T.I 1º: MECANICA I Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila PROBLEMA 6.14 (Pag. 224) Dibujar el diagrama de sólido libre para la barra AB y para la barra BD. Desprecia el peso de las barras.

I.T.I 1º: MECANICA I Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Idealización de apoyos y conexiones tridimensionales A continuación se indican los tipos habituales de apoyos y conexiones utilizados en cuerpos rígidos sometidos a sistemas tridimensionales de fuerzas, junto con las F y M que se utilizan para representar sus acciones sobre el cuerpo rígido en el DSL. A) Rótula Puede transmitir una fuerza R pero no momentos. Esta fuerza suele representarse mediante sus tres componentes rectangulares.

I.T.I 1º: MECANICA I Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila C) Cojinete de bolas El cojinete de bolas ideal (liso) tiene por misión transmitir una fuerza R en una dirección perpendicular al eje del cojinete. Si el cojinete tiene la dirección del eje y, la acción del cojinete se representa en el DSL por las componente R x y R z. B) Gozne (Bisagra) Normalmente destinado a transmitir una fuerza R en una dirección perpendicular al eje del pasador del gozne. Su diseño puede también permitir transmitir una componente de la fuerza a lo largo del eje del pasador. Ciertos goznes pueden transmitir pequeños momentos respecto a ejes perpendiculares a ejes del pasador. Las parejas de goznes alineadas adecuadamente sólo transmiten fuerzas en las condiciones de utilización normales.

I.T.I 1º: MECANICA I Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila E) Cojinete de empuje Ha de transmitir componentes de fuerza tanto perpendiculares como paralelas al eje del cojinete. Ciertos cojinetes de empuje pueden transmitir pequeños momentos respecto a ejes perpendiculares al eje del árbol. Las parejas de cojinetes alineados adecuadamente sólo transmiten fuerzas en condiciones normales de funcionamiento. D) Cojinete de fricción (Chumacera) Han de transmitir una fuerza R en una dirección perpendicular a su eje. Ciertas chumaceras pueden transmitir pequeños momentos respecto a ejes perpendiculares al eje del árbol. Las parejas de chumaceras alineadas adecuadamente sólo transmiten fuerzas perpendiculares al eje del árbol.

I.T.I 1º: MECANICA I Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila F) Articulación lisa de pasador Ha de transmitir una fuerza R en una dirección perpendicular al eje del pasador, pero también puede transmitir una componente de la fuerza según dicho eje. También pueden transmitir pequeños momentos respecto a ejes perpendiculares al eje del pasador. G) Apoyo fijo (Empotramiento) Puede resistir tanto una fuerza R como un par C. Se desconocen los módulos y direcciones de fuerza y par por lo que en el DSL se representan las tres componentes rectangulares de cada uno.

I.T.I 1º: MECANICA I Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila PROBLEMA 6.5 DSL Dibujar el diagrama de sólido libre de la barra curva soportada por una rótula en A, un cable flexible en B y una articulación de pasador en C. Despréciese el peso de la barra.

I.T.I 1º: MECANICA I Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila PROBLEMA 6.21 (Pag. 225) Dibujar el diagrama de sólido libre del bloque representado en la figura. El apoyo en A es una rótula y el soporte en B es una articulación de pasador.

I.T.I 1º: MECANICA I Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila PROBLEMA 6.24 (Pag. 225) Dibujar el diagrama de sólido libre de la barra doblada de la figura. El apoyo en A es una chumacera y los apoyos en B y C son cojinetes de bolas. Despréciese el peso de la barra 3

I.T.I 1º: MECANICA I Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Equilibrio en dos dimensiones Problema bidimensional: en él, las fuerzas que intervienen están contenidas en un plano y los ejes de todos los pares son perpendiculares al plano que contiene las fuerzas. Las ecuaciones de equilibrio se reducen (vectorialmente) a: Así, tres de las seis ecuaciones escalares independientes del equilibrio se satisfacen automáticamente: Por tanto, sólo hay tres ecuaciones escalares independientes para el equilibrio de un cuerpo rígido sometido a un sistema bidimensional de fuerzas: La tercera ecuación se refiere a la suma de momentos de todas las fuerzas respecto a un eje z que pase por un punto cualquiera A perteneciente al cuerpo o no. Esta últimas ecuaciones constituyen las condiciones necesarias y suficientes para el equilibrio de un cuerpo rígido sometido a un sistema bidimensional de fuerzas.

I.T.I 1º: MECANICA I Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila En la primera figura se aprecian la resultante R y el par resultante C de un sistema bidimensional cualquiera de fuerzas que se ejercen sobre un cuerpo rígido. La resultante puede expresarse mediante sus componentes rectangulares (figura 2). Si se cumple la condición: Si además se cumple que: Para todo punto B del cuerpo o exterior a él, que no se halle en el eje y, la ecuación sólo puede satisfacerse si Así pues, otro sistema de ecuaciones escalares para el equilibrio en problemas bidimensionales es: en donde los puntos A y B han de tener coordenadas x diferentes. Hay otras dos maneras de expresar las ecuaciones de equilibrio de un cuerpo sometido a un sistema bidimensional de fuerzas. 1ª

I.T.I 1º: MECANICA I Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila ª Las ecuaciones de equilibrio para un sistema bidimensional de fuerzas se pueden escribir también utilizando tres ecuaciones de momentos. Si se cumple la condición: Además para un punto B del eje x que pertenezca o no al cuerpo (excepto en el punto A), la ecuación podrá satisfacerse sólo si Así pues, Para todo punto C, perteneciente al cuerpo o no, que no esté sobre el eje x, la ecuación solo podrá satisfacerse si Así pues, otro sistema de ecuaciones escalares para el equilibrio en problemas bidimensionales es: donde A, B y C son tres puntos cualesquiera no alineados.

I.T.I 1º: MECANICA I Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Cuerpos (miembros) de 2 fuerzas El equilibrio de un cuerpo sometido a dos fuerzas se presenta con bastante frecuencia por lo que se le presta especial atención. Ejemplo: barra de conexión de peso despreciable (figura). Las fuerzas que sobre la barra ejercen los pasadores lisos situados en A y B se pueden descomponer en componentes según el eje de la barra y perpendicular a él. Aplicado ecuaciones de equilibrio: Las fuerzas A y y B y forman un par que debe ser nulo si la barra está en equilibrio, por tanto: Así pues, en los miembros de dos fuerzas, el equilibrio exige que las fuerzas sean de igual módulo y recta soporte, pero opuestas. La forma del miembro no influye en este sencillo requisito. Los pesos de los miembros deben ser despreciables.

I.T.I 1º: MECANICA I Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Cuerpos (miembros) de 3 fuerzas El equilibrio de un cuerpo bajo la acción de tres fuerzas constituye también una situación especial. Ejemplo: Si un cuerpo está en equilibrio bajo la acción de tres fuerzas las rectas soportes de éstas deben ser concurrentes (pasar por un punto común). Si no fuera así, la fuerza no concurrente ejercería un momento respecto al punto de concurso de las otras dos fuerzas. Caso particular: Un cuerpo sometido a tres fuerzas paralelas. El punto de concurso es el infinito. DSL de AB

I.T.I 1º: MECANICA I Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Reacciones hiperestáticas y ligaduras parciales Tenemos un cuerpo sometido a un sistema de fuerzas coplanarias. Este puede sustituirse por uno equivalente formado por una fuerza que pase por un punto arbitrario A y un par. Para que el cuerpo esté en equilibrio, los apoyos deben poder ejercer sobre el cuerpo un sistema fuerza-par igual y opuesto (ligaduras). Ejemplo: Consideremos los apoyos de la figura (a) El pasador en A puede ejercer fuerzas en x y en y que eviten la traslación del cuerpo pero no puede ejercer un momento que impida la rotación entorno a A. La barra B origina una fuerza en y generando así un momento respecto a A que impida la rotación del cuerpo. Cuando las ecuaciones de equilibrio sean suficientes para determinar las fuerzas incógnitas en los apoyos el cuerpo está determinado estáticamente con ligaduras adecuadas (isostáticas).

I.T.I 1º: MECANICA I Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Tres reacciones vinculares para un cuerpo sometido a un sistema de fuerzas coplanario no siempre garantizan que el cuerpo esté determinado estáticamente con ligaduras isostáticas. Ejemplo 1: El pasador en A puede ejercer fuerzas en x y en y que eviten la traslación del cuerpo, pero como la recta soporte de B x pasa por A, no ejerce el momento necesario para evitar la rotación en torno a A. El cuerpo está ligado parcialmente (insuficientemente) y las ecuaciones de equilibrio no son suficientes para determinar todas las reacciones incógnitas. Lo mismo ocurre en el siguiente ejemplo:

I.T.I 1º: MECANICA I Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Ejemplo 2: Sus tres conexiones pueden evitar la rotación en torno a un punto cualquiera y la traslación del cuerpo en la dirección y pero no la traslación del cuerpo en la dirección x. Un cuerpo con un número adecuado de reacciones está insuficientemente ligado cuando las ligaduras estén dispuestas de tal manera que las fuerzas en los apoyos sean concurrentes o paralelas.

I.T.I 1º: MECANICA I Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Los cuerpos ligados parcialmente pueden estar en equilibrio bajo la acción de sistemas de fuerzas específicos. Ejemplo: Las reacciones R A y R B de la viga se pueden determinar usando Sin embargo, la viga está insuficientemente ligada ya que se movería en la dirección x si cualquiera de las cargas aplicadas tuviera una pequeña componente según x.

I.T.I 1º: MECANICA I Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Así, las 3 ecuaciones independientes de equilibrio no proporcionan suficiente información para determinar las 4 incógnitas. Los cuerpos ligados con apoyos de más están indeterminados estáticamente ya que serán necesarias relaciones referentes a propiedades físicas del cuerpo (sistemas hiperestáticos). Los apoyos que no son necesarios para mantener el equilibrio del cuerpo se llaman superabundantes. Ejemplos: Si en vez de una conexión rígida en B colocamos un pasador, se obtiene una reacción adicional Bx que no es necesaria para evitar el movimiento del cuerpo. DSL

I.T.I 1º: MECANICA I Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Resolución de problemas Pasos para analizar y resolver problemas de equilibrio : 1.Leer atentamente el enunciado. 2.Identificar el resultado que se pide. 3.Preparar un esquema a escala y tabular la información de que se dispone. 4.Identificar las ecuaciones de equilibrio a utilizar para obtener el resultado. 5.Dibujar el diagrama de sólido libre adecuado. 6.Aplicar las ecuaciones adecuadas de fuerzas y momentos. 7.Registrar la respuesta con el número adecuado de cifras significativas y las unidades apropiadas. 8.Estudiar la respuesta y determinar si es razonable. Como comprobación, escribir otras ecuaciones de equilibrio y ver si las satisface la solución. La aplicación a problemas de equilibrio del procedimiento visto en el capítulo primero para resolver problemas de tipo técnico, conduce a lo siguiente:

I.T.I 1º: MECANICA I Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila PROBLEMA 6.6 DSL Una armadura conectada mediante pasadores está cargada y apoyada en la forma que se indica en la figura. El cuerpo W tiene una masa de 100 kg. Determinar las componentes de las reacciones en los apoyos A y B.

I.T.I 1º: MECANICA I Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila PROBLEMA 6.7 DSL Una viga está cargada y apoyada en la forma que se indica en la figura. Determinar las componentes de las reacciones en los apoyos A y B.

I.T.I 1º: MECANICA I Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila PROBLEMA 6.8 DSL Una viga está cargada y apoyada en la forma que se indica en la figura. Determinar las compo- nentes de las reacciones en los apoyos A y B.

I.T.I 1º: MECANICA I Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila PROBLEMA 6.9 DSL Un entramado conectado mediante pasadores está cargado y apoyado según se indica en la figura. Determinar las reacciones en los apoyos A y B.

I.T.I 1º: MECANICA I Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila PROBLEMA 6.10 DSL´s Un entramado de dos barras conectado por pasadores está cargado y apoyado según se indica en la figura. Determinar las reacciones en los apoyos A y B.

I.T.I 1º: MECANICA I Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila PROBLEMA 6.11 DSL Una barra que pesa 1250 N está soportada por un poste y un cable según se indica en la figura. Se suponen lisas todas las superficies. Determinar la tensión del cable y las fuerzas que se ejercen sobre la barra en las superficies de contacto.

I.T.I 1º: MECANICA I Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila PROBLEMA 6.12 Un cilindro de masa 50 kg se apoya sobre un plano inclinado y un entramado de dos barras articulado por pasador. Suponiendo lisas todas las superficies, determinar: a)Las fuerzas que sobre el cilindro ejercen las superficies de contacto. b)Las reacciones en los apoyos A y C del entramado de dos barras.

I.T.I 1º: MECANICA I Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila PROBLEMA 6.12 bis DSL´s

I.T.I 1º: MECANICA I Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila PROBLEMA 6.51 (Pag. 244) Tres tuberías se encuentran sobre un bastidor según se indica en la figura. Cada tubería pesa 500 N. Determinar las reacciones en los apoyos A y B.

I.T.I 1º: MECANICA I Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila RECUERDA: Resultante de un sistema de fuerzas cualesquiera La resultante de un sistema tridimensional de fuerzas cualesquiera (figura 1) se puede determinar descomponiendo cada fuerza del sistema en una fuerza igual y paralela que pase por un punto dado (O origen de coordenadas) y un par. (figura 2) El sistema dado se sustituye por dos sistemas (figura 3) : Un sistema de fuerzas no coplanarias concurrentes en O con módulo, dirección y sentido igual a los de las fuerzas del sistema original. Un sistema de pares no coplanarios. 6.4 Equilibrio en tres dimensiones

I.T.I 1º: MECANICA I Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Cada una de las fuerzas y cada uno de los pares de los dos sistemas se pueden descomponer en componentes según los ejes de coordenadas (figuras 1 y 2) La resultante del sistema de fuerzas concurrentes es un fuerza R que pasa por el origen y la resultante del sistema de pares no coplanarios es un par C. Casos particulares: R = 0 C = 0 R = 0 y C = 0 (Sistema en equilibrio) Por tanto, la resultante de un sistema de fuerzas cualquiera puede ser o una fuerza R o un par C o una fuerza más un par.

I.T.I 1º: MECANICA I Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Equilibrio en tres dimensiones (Continuación) Por tanto y como ya se ha dicho, un sistema genérico, tridimensional, de n fuerzas y n pares puede sustituirse por un sistema equivalente constituido por fuerzas concurrentes no coplanarias y un sistema de pares no coplanarios cuyas resultantes se pueden expresar así: La fuerza resultante R, junto con el par resultante C, constituyen la resultante del sistema genérico tridimensional de fuerzas. Así pues, un cuerpo rígido sometido a un sistema genérico tridimensional de fuerzas estará en equilibrio si R = C = 0, lo que exige que 6 ec. escalares de equil. indep. Estas son las condiciones necesarias y suficientes para el equilibrio del cuerpo.

I.T.I 1º: MECANICA I Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila PROBLEMA 6.13 DSL Una placa que pesa 2,5 kN está soportada por un árbol AB y un cable C. En A hay un cojinete de bolas y en B un cojinete de empuje. Los cojinetes están alineados adecuadamente de forma que solo trasmiten fuerzas. Determinar las reacciones en los cojinetes A y B y la tensión en el cable C cuando se apliquen a la placa las tres fuerzas indicadas.

I.T.I 1º: MECANICA I Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila PROBLEMA 6.14 DSL Un poste y un soporte sostienen una polea. Un cable que pasa sobre la polea transmite una carga de 2500 N en la forma indicada. Determinar la reacción en el apoyo A del poste.

I.T.I 1º: MECANICA I Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila PROBLEMA 6.15 DSL Las masas de las cajas que descansan sobre la plataforma son 300 kg, 100 kg y 200 kg respectivamente. La masa de la plataforma es de 500 kg. Determinar las tensiones de los tres cables A, B y C que la soportan.

I.T.I 1º: MECANICA I Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila PROBLEMA 6.16 DSL El tablero de la figura tiene una masa de 25 kg y lo mantienen en posición horizontal dos goznes y una barra. Los goznes están alineados adecuadamente de forma que solo ejercen reacciones de fuerza sobre el tablero. Supóngase que el gozne en B resiste toda fuerza dirigida según el eje de los pasadores de los goznes. Determinar las reacciones en los apoyos A, B y D.

I.T.I 1º: MECANICA I Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila PROBLEMAS Recomendados: Los ejercicios de las Paginas Del 6-72 al 6-81

I.T.I 1º: MECANICA I Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila PROBLEMA 6.73 (Pag. 257) El rodillo de la figura pesa 1250 N. Determinar la fuerza p que hay que aplicarle para que supere el escalón que se indica.

I.T.I 1º: MECANICA I Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila Departamento de Ingeniería Mecánica, Energética y de Materiales Ingeniaritza Mekanikoa, Energetikoa eta Materialeen Saila PROBLEMA 6.74 (Pag. 257) La barra AB de la figura tiene sección recta uniforme, masa 25 kg y longitud 1 m. Determinar el ángulo  correspondiente al equilibrio.