TEMA 8 <<FUNCIONES>>
FUNCIONES Una empresa de mensajería cobra a sus clientes una tarifa de 30€ por cada 20 kg de mercancía y un suplemento inicial de 60€ por gastos de desplazamiento. Halla la ecuación de la función que relaciona el coste del transporte con el peso de la mercancía. Dibuja la gráfica de la función ¿Cuánto tendría que pagar una persona si quiere transportar un paquete de 35 Kg? ¿Si pagamos 120 €, cuanto pesa la mercancía que hemos mandado transportar?
Estrategias a seguir Para abordar cada apartado del problema seguiremos una serie de pautas que simplificaran la dificultad de este: Comprender el problema. Tenemos que saber perfectamente que nos piden y partir de los datos que tenemos. Trazar un plan. Plantearemos el problema de una manera sencilla y no demasiado mecánica. Poner en práctica el plan. Intentando comprobar que cada paso que damos es correcto. Comprobar los resultados. Asegurarnos de que es esa la solución y no otra. Nota: en cada ejercicio iremos indicando el paso que damos con un número en vez de volver a indicar todos los pasos
Halla la ecuación de la función que relaciona el coste del transporte con el peso de la mercancía. ¿Qué nos piden? Nos piden la ecuación de una función. Pero…….. ¿Cuál? Más adelante veremos a ver que tipo de graficas sabemos y cual es la que más se asemeja al enunciado de nuestro Problema. Datos que tenemos: 1. Por cada 20 Kg de mercancía nos cobran 30€. 2. La empresa cobra un suplemento inicial de 60€ por gastos de desplazamiento.
Halla la ecuación de la función que relaciona el coste del transporte con el peso de la mercancía. ¿Cómo lo hacemos? 1º- Intentaremos identificar cada incógnita. ¿Qué es “x”? y ¿Qué es “y”? 2º- Descubriremos que tipo de función es: ¿es una función lineal de proporcionalidad directa?, ¿una función afín?, ¿o quizás una hipérbola?. 3º- A partir de los datos que tenemos hallaremos todos los elementos de la ecuación que nos faltan.
Entonces….. ¿Cuál es cual? Halla la ecuación de la función que relaciona el coste del transporte con el peso de la mercancía. ¡¡¡Manos a la obra!!! 1º- Identificar incógnitas. Tenemos dos incógnitas: el PRECIO y el PESO Sabemos que la “x” representa el término independiente; es decir, que puede tomar cualquier valor sin depender de nadie. Y que la “y” representa el término dependiente; es decir, que depende del valor que toma la “x”. Entonces….. ¿Cuál es cual?
Halla la ecuación de la función que relaciona el coste del transporte con el peso de la mercancía. ¿Quién depende de quién? …….. El precio del transporte depende del peso del paquete que hemos mandado transportar. Luego=> X es el PESO Y es el PRECIO
Halla la ecuación de la función que relaciona el coste del transporte con el peso de la mercancía. 2º- ¿Qué tipo de función es? Para identificarla miraremos todas las funciones que sabemos y, partiendo del dibujo de la gráfica, intentaremos descubrir que tipo de función es. Funciones conocidas: Función lineal Función afín Hipérbola Recta horizontal
Halla la ecuación de la función que relaciona el coste del transporte con el peso de la mercancía. En las hipérbolas, a medida que aumenta la “x”, la “y” va disminuyendo y aproximándose a cero. En nuestro problema no tiene sentido que cuanto más pesado sea el paquete, menos nos cobren; luego….. NO ES UNA HIPÉRBOLA
Halla la ecuación de la función que relaciona el coste del transporte con el peso de la mercancía. En las rectas horizontales, el valor de la “y” no aumenta ni disminuye cuando “x” cambia, “y” no varía En nuestro problema tampoco tiene sentido que nos cobren siempre el mismo precio. Luego…. NO ES UNA RECTA HORIZONTAL
Halla la ecuación de la función que relaciona el coste del transporte con el peso de la mercancía. La función lineal parece ser la mejor opción, pero… Si te fijas en el enunciado, en el precio hay un suplemento de 60€ simplemente por gastos de desplazamiento. Por lo que la recta no pasa por el origen. NO ES UNA FUNCIÓN LINEAL
Halla la ecuación de la función que relaciona el coste del transporte con el peso de la mercancía. Parece que esta función es la que más se asemeja a nuestro problema: - El precio va aumentando conforme más pesado sea el paquete. - Tiene en cuenta los 60€ de desplazamiento. SI ES UNA FUNCIÓN AFÍN
¡¡¡Ya tenemos el tipo de función y su ecuación!!! FUNCIÓN AFÍN: Halla la ecuación de la función que relaciona el coste del transporte con el peso de la mercancía. ¡¡¡Ya tenemos el tipo de función y su ecuación!!! FUNCIÓN AFÍN:
Halla la ecuación de la función que relaciona el coste del transporte con el peso de la mercancía. 3º- Ya sabemos el tipo de función que es: Ahora solo tenemos que hallar los parámetros “m” y “n”: m=>representa la pendiente (inclinación) de la recta; es decir, cuanto avanza “x” cuando aumenta “y”: Para calcularla volveremos a leer el enunciado del problema.
Halla la ecuación de la función que relaciona el coste del transporte con el peso de la mercancía. “Una empresa de mensajería cobra a sus clientes una tarifa de 30€ por cada 20 kg de mercancía y un suplemento inicial de 60€ por gastos de desplazamiento.” ¿No crees que la frase “cobra a sus clientes una tarifa de 30€ por cada 20 kg de mercancía” nos da una idea de la pendiente de la recta? Por cada aumento de 20 Kg del peso del paquete, aumenta el precio 30€
Halla la ecuación de la función que relaciona el coste del transporte con el peso de la mercancía. n=>representa el corte de la recta con el eje “y”. Para saber cual es, volveremos a leer el enunciado del problema. “Una empresa de mensajería cobra a sus clientes una tarifa de 30€ por cada 20 kg de mercancía y un suplemento inicial de 60€ por gastos de desplazamiento.” ¿”Suplemento inicial de 60€ por gastos de desplazamiento”? ¿Qué significará eso?...... Significa que, aparte del coste del paquete, tendríamos que pagar 60€ más inicialmente; luego:
Halla la ecuación de la función que relaciona el coste del transporte con el peso de la mercancía. Ya sabemos que: Luego la ecuación de la función es…. ¡¡¡ !!!!
Dibuja la gráfica de la función Tabla de valores Gráfica X Y 60 5 67.5 10 75 15 85.2 20 90 25 97.5 30 105 35 112.5 40 120
¿Cuánto tendría que pagar una persona si quiere transportar un paquete de 46 Kg? ¿Qué nos piden? Nos piden el PRECIO (kg);es decir, nos piden la “y” ¿Qué datos tenemos? Tenemos el PESO (Kg);tenemos la “x” Sólo tenemos que sustituir el dato del peso (“x”)en la ecuación y así obtendremos el coste del transporte (“y”)
¿Cuánto tendría que pagar una persona si quiere transportar un paquete de 46 Kg?
¿Cuánto tendría que pagar una persona si quiere transportar un paquete de 46 Kg? Solución: Si se quiere transportar un paquete de 46 Kg, se pagará 129€ por el servicio. ¿Está bien la solución? ¿Cómo podemos asegurarnos de que la solución es correcta? Una forma de comprobarlo es realizando el proceso inverso, es decir, calculando cuanto pesa el paquete enviado si hemos pagado 129€
¿Cuánto tendría que pagar una persona si quiere transportar un paquete de 46 Kg?
¡¡¡Cuidado!!! Recuerda que tenemos el valor “y”, y no “x”, como antes. ¿Si pagamos 120€, cuanto pesa la mercancía que hemos mandado trasportar? ¿Qué nos piden? Nos piden el PESO (Kg); es decir, nos piden “x” ¿Qué datos tenemos? Tenemos el PRECIO(€);tenemos la “y” Al igual que antes, sólo hay que sustituir en la ecuación de la función. Pero…… ¡¡¡Cuidado!!! Recuerda que tenemos el valor “y”, y no “x”, como antes.
¿Si pagamos 120€, cuanto pesa la mercancía que hemos mandado trasportar?
¿Si pagamos 120€, cuanto pesa la mercancía que hemos mandado trasportar? Solución: Si pagamos 120€, hemos mandado transportar una carga de 40 Kg. ¿Está bien la solución? Para asegurarnos solo tenemos que sustituir los 40 Kg de la solución y comprobar que hemos pagado los 120€ del enunciado del problema (realizamos el mismo proceso que antes pero a la inversa).
¿Si pagamos 120€, cuanto pesa la mercancía que hemos mandado trasportar?
FIN