Geometría y Álgebra en el arte nazarí

Slides:



Advertisements
Presentaciones similares
Teorema de Pitágoras 1 Triángulos rectángulos
Advertisements

Procesos matemáticos en la enseñanza/aprendizaje de la geometría
REPASO CAPITULO 8 EN ESPAÑOL PARA 10MO GRADO SEGUNDO SEMESTRE
TRANSFORMACIONES GEOMETRICAS
Triángulos y cuadriláteros Polígonos regulares
Líneas, ángulos y figuras planas
Santiago, 28 de septiembre del 2013
Geometría Es la parte de las Matemáticas que estudia las propiedades de los cuerpos en el plano y en el espacio. Por Aida.
Geometría Es la parte de las Matemáticas que estudia las propiedades de los cuerpos en el plano y en el espacio. Por Aida.
Geometría Es la parte de las Matemáticas que estudia las propiedades de los cuerpos en el plano y en el espacio. Por Aida.
GEOMETRIA PLANA.
Juego de Estrategia FOSFOROS RAZONAMIENTO LÓGICO – MATEMÁTICO
TRANSFORMACIONES GEOMÉTRICAS
El cuadrado y el rombo.
FIGURAS GEOMÉTRICAS SUPERFICIE AREA UNIDADES DE MEDIDA FIGURAS PLANAS
FIGURAS GEOMETRICAS POR : Rodrigo Diaz 1ºB.
Cálculo de áreas Sabias que el área de una figura geométrica es todo el espacio que queda encerrado entre los límites de esa figura.
Transformaciones Isométricas
MOVIMIENTOS EN EL PLANO
LOS PARALELOGRAMOS.
¿Saben las abejas matemáticas?
__________ _______ _______ __ _____
SIMETRÍA.
(o como embaldosar el plano)
CUERPOS GEOMÉTRICOS A.- Poliedros:
TEMA 9 PROPORCIÓN Y ESTRUCTURAS MODULARES
FIGURAS GEOMETRICAS POR : Rodrigo Diaz 1ºB.
4A) Equilibrio y dinamismo de la forma
RECTAS Y ÁNGULOS.
Recurso Educativo: ideado y creado por : J u a n L e p e L u e n g o
TRANSFORMACIONES ISOMÉTRICAS En una transformación isométrica:
Superponiendo dos tiras rectangulares del mismo grosor y dispuestas perpendicularmente conseguimos
10 Movimientos y semejanzas
Números Irracionales ESQUEMA RECURSOS RECURSOS.
Transformaciones Isométricas
Repaso PPAA 2012 Matemáticas Para los grados del 4-6
Transformaciones Isométricas
Los 17 grupos cristalográficos planos
Geometría del espacio – Sólidos geométricos - PRISMA
PROBLEMAS DE GEOMETRÍA
Transformaciones isométricas
LA RECTA Y SUS ECUACIONES
Tema 6.- Simetría Interna: Grupos Espaciales
GEOMETRÍA, ARTE Y BELLEZA
PROFESORA :ANDREA LÓPEZ
Simetrías.
TRANSFORMACIONES ISOMÉTRICAS.
¿Qué son las teselaciones?
Departamento de Matemática
TRANSFORMACIONES ISOMETRICAS EN EL PLANO Departamento de Matemática
Cuadriláteros y otros polígonos
POLÍGONOS.
Presentación tema de Geometría: “ CUADRILATEROS”
Semejanza. Teorema de Tales
Diseñando camisetas: Un viaje por la geometría nazarí
POLÍGONOS TÍA ANDREA 4° BÁSICO.
Mosaicos - Simetría G4D José M. Arranz, Rafael Losada José A. Mora y Manuel Sada Castro Urdiales Marzo de 2009.
REDES Y FORMAS MODULARES
Transformaciones Isométricas
Rotación y reflexión en el plano
Clasificación de polígonos Elementos de polígonos
Apuntes de Matemáticas 3º ESO
Los polígonos y su superficie
El Teorema Más Famoso Del Mundo
Figuras Geométricas TRIÁNGULO
Unidad V 8º Básico Luis Fonseca – Evelyn Iubini – Carla Salazar.
Valladolid, Febrero 2011 Ana García Lema
INTEGRANTES: FABIOLA PERALTA M. KARLA SERRANO L. ANA SALOMO WILLIAMS VIDAL MANUEL DIAZ.
FIGURAS CUADRADOS ,RECTANGULOS, ROMBO ,ROMBOIDE
Rotación, Traslación y Reflexión de Polígonos
Transcripción de la presentación:

Geometría y Álgebra en el arte nazarí Los mosaicos de la Alhambra

Estos motivos y otros similares se encuentran casi por doquier en la Alhambra de Granada

Su belleza y su impacto estético son muy grandes

Y nos llama poderosamente la atención la gran variedad y riqueza de mosaicos y motivos geométricos que podemos encontrar.

Por otra, la divinidad se identifica con el uno, con la singularidad. Las causas principales de esta explosión de geometría en el arte hispano-musulmán hemos de buscarlas en la religión: Por una parte el Corán prohíbe cualquier representación icónica de Alá. Por otra, la divinidad se identifica con el uno, con la singularidad.

Y efectivamente comprobamos al observar todos estos mosaicos que ningún punto es singular ni más importante que los demás.

Para conseguir este efecto se utilizan dos técnicas: Aplicación de recursos de simetría. Intentar llenar todo el plano de forma regular y armoniosa. Esto obliga a recurrir a la geometría dinámica, basada en la composición de movimientos en el plano.

Lo que se mueve en el plano son polígonos regulares, de tal forma que: No quede espacio ninguno del plano sin cubrir. No se superpongan unos polígonos con otros.

Pero lo curioso y llamativo, es que también se puede cubrir el plano con figuras que no son polígonos regulares.......................

¿Cómo se puede conseguir eso? La respuesta es sencilla: las figuras utilizadas provienen de polígonos de regulares. Sólo hay que transformarlos de manera adecuada.

Por ejemplo, el “hueso” se obtiene deformando un cuadrado:

El “pétalo” se obtiene deformando un rombo:

La “pajarita nazarí” se obtiene deformando un triángulo:

Y así sucesivamente con todos y cada uno de los mosaicos que vemos en la Alhambra.

Pero lo que hace de la Alhambra un lugar mágico y especial desde el punto de vista de las matemáticas no es sólo la belleza, la armonía y la abundancia de formas basadas en diseños geométricos. Hay un hecho realmente sorprendente que revela el conocimiento matemático de los musulmanes de la época. Aunque parezca que hay infinidad de estructuras en estos mosaicos, todos se ajustan a 17 modelos distintos. Estos modelos fueron investigados por Fedorov a finales del siglo XIX, y fue precisamente este matemático quien demostró que cualquier posible teselación del plano se ajusta a una de esas 17 configuraciones. Es decir: matemáticamente, el plano sólo se puede teselar de 17 formas diferentes, ni una más ni una menos. (Teorema de Fedorov, 1891.) Y aquí tenemos a todos ellos:

1.- Grupo p1: dos traslaciones.

2.- Grupo p3: dos giros de 120º.

3.- Grupo p3 1m: una simetría axial y un giro de 120º.

4.- Grupo p6: una simetría central y un giro de 120º

5.- Grupo p6m: tres simetrías axiales en los lados de un triángulo de ángulos 30-60-90.

6.- Grupo p4: una simetría central y un giro de 90º.

7.- Grupo p4g: una simetría axial y un giro de 90º.

8.- Grupo p4m: tres simetrías axiales en los lados de un triángulo de ángulos 45-45-90.

9.- Grupo cm: una simetría axial y una simetría con deslizamiento perpendicular.

10.- Grupo cmm (“pez volador”): dos simetrías axiales perpendiculares y una simetría central.

11.- Grupo pm: dos simetrías axiales y una traslación.

12.- Grupo pmm: cuatro simetrías axiales en los lados de un rectángulo.

13.- Grupo pmg: una simetría axial y dos simetrías centrales.

14.- Grupo p2: tres simetrías centrales.

15.- Grupo pg: dos simetrías con deslizamiento paralelas.

16.- Grupo pgg: dos simetrías con deslizamiento perpendiculares.

17.- Grupo p3m1: tres simetrías axiales en los lados de un triángulo equilátero.

Estos grupos los descubren y son estudiados por los cristalógrafos ayudándose de técnicas tan modernas como los rayos X, debido a que estos grupos explican la estructura molecular de los cristales que se encuentran en la naturaleza.

A continuación llegamos los matemáticos y realizamos por enésima vez una abstracción del modelo físico, y demostramos de manera seria, formal, rigurosa y abstracta que en el plano sólo puede haber 17 de tales configuraciones.

Si no increíble, sí bastante sorprendente, ¿o no? Pero claro, imaginemos la sorpresa de los matemáticos contemporáneos cuando se dan cuenta de que las implicaciones de un teorema recientemente demostrado eran ya conocidas por una civilización cuatro siglos antes. Si no increíble, sí bastante sorprendente, ¿o no? Realizado por Miguelo 2005