La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

FUNDAMENTOS DE MATEMÁTICA FINANCIERA Curso de Preparación y Evaluación de Proyectos.

Presentaciones similares


Presentación del tema: "FUNDAMENTOS DE MATEMÁTICA FINANCIERA Curso de Preparación y Evaluación de Proyectos."— Transcripción de la presentación:

1 FUNDAMENTOS DE MATEMÁTICA FINANCIERA Curso de Preparación y Evaluación de Proyectos

2 Ciclo de vida Identifi- cación Diagnós- tico Evaluación Temario ILPES 2 EVALUACIÓN DE PROYECTOS : Introducción Matemáticas Financieras Flujo de Fondos Criterios de Decisión VAN TIR Otros Temario

3 Ciclo de vida Identifi- cación Diagnós- tico Evaluación Temario ILPES 3 MATEMÁTICA FINANCIERA Valor del dinero en el tiempo Valor futuro y valor actual Tasas de interés compuesta y simple Anualidades Inflación y tasas de interés Temario

4 Ciclo de vida Identifi- cación Diagnós- tico Evaluación Temario ILPES 4 Corresponde a la rentabilidad que un agente económico exigirá por no hacer uso del dinero en el periodo 0 y posponerlo a un periodo futuro Valor del dinero en el tiempo Sacrificar consumo hoy debe compensarse en el futuro. Un monto hoy puede al menos ser invertido en el banco ganando una rentabilidad. La tasa de interés (r) es la variable requerida para determinar la equivalencia de un monto de dinero en dos periodos distintos de tiempo La sociedad es un participante más que también tiene preferencia intertemporal entre consumo e inversión presente y futura.

5 Ciclo de vida Identifi- cación Diagnós- tico Evaluación Temario ILPES 5 Periodo 0 (Año 0) $1.000 $1.100 Si r = 10% Periodo 1 (Año 1) Valor del dinero en el tiempo...continuación... Ejemplo Un individuo obtiene hoy un ingreso (Y 0 ) de $1.000 por una sola vez y decide no consumir nada hoy. Tiene la opción de poner el dinero en el banco. a) ¿Cuál será el valor de ese monto dentro de un año si la tasa rentabilidad o de interés (r) que puede obtener en el banco es de 10% ? * (0,1) = 100 (rentabilidad) = (valor dentro de un año)

6 Ciclo de vida Identifi- cación Diagnós- tico Evaluación Temario ILPES 6 Valor del dinero en el tiempo...continuación Si : Sólo hay 2 periodos Ingreso sólo hoy (Y 0 =1.000) Puede consumir hoy o en un año (C 0, C 1 ) Rentabilidad exigida por no consumir hoy: r=10% b) ¿ Cuál sería el monto final disponible para consumir dentro de un año si consume $200 hoy ? Si C 0 =200, C 1 =( )*1,1= 880 Entonces C 1 = (Y 0 – C 0 )*(1+r) (200, 880) (500, 550) (800, 220) Consumo total= = 1.080

7 Ciclo de vida Identifi- cación Diagnós- tico Evaluación Temario ILPES 7 Valor futuro (VF) y valor actual (VA) 0 3 VF Año: VA 12 Si son 3 periodos Caso General: VALOR FUTURO 0 1 VFVA Año: Sólo 1 periodo Donde: r = tasa de interés

8 Ciclo de vida Identifi- cación Diagnós- tico Evaluación Temario ILPES 8 Valor futuro (VF) y valor actual (VA) 0 3 VF Año: VA 12 Caso 3 periodos Caso General: VALOR ACTUAL...continuación VFVA Año: Caso 1 periodo Donde: r = tasa de interés

9 Ciclo de vida Identifi- cación Diagnós- tico Evaluación Temario ILPES 9 Ejemplo VF : Valor futuro (VF) y valor actual (VA) a) Si se tiene $1.000 hoy y la tasa de interés anual es de 12%. ¿Cuál será su valor al final del tercer año? Año 0:1.000 Año 1:1.000 * (1+0,12) = Año 2:1.120 * (1+0,12) = Año 3:1.254 * (1+0,12) = VF= * (1+0,12) 3 = * 1,4049 = Alternativamente:...continuación...

10 Ciclo de vida Identifi- cación Diagnós- tico Evaluación Temario ILPES 10 Ejemplo VA: Valor futuro (VF) y valor actual (VA) b) Si en cuatro años más necesito tener $ y la tasa de interés anual es de 15%. ¿Cuál es el monto que requiero depositar hoy para lograr la meta? Año 4:3.300 Año 3:3.300 / (1+0,15) = 2.869,6 Año 2:2.869,6 / (1+0,15) = 2.495,3 Año 1:2.495,3 / (1+0,15) = 2.169,8 Año 0:2.169,8 / (1+0,15) = 1.886,8 VA= / (1+0,15) 4 = / 1,749 = 1.886,8 Alternativamente:...continuación

11 Ciclo de vida Identifi- cación Diagnós- tico Evaluación Temario ILPES 11 Ejemplos VF y VA: Valor futuro (VF) y valor actual (VA) Caso especial c) Si los $1.000 de hoy equivalen a $1.643 al final del año 3. ¿Cuál será la tasa de interés anual relevante?...continuación VF= * (1+r) 3 = (1+r) 3 = 1,64 (1+r) = (1,64) 1/3 1+r = 1,18 r = 0,18

12 Ciclo de vida Identifi- cación Diagnós- tico Evaluación Temario ILPES 12 Tasas de interés compuesta y simple Tasa de interés compuesta Corresponde al mismo concepto asociado a la conversión de un valor actual (VA) en un valor final (VF) y viceversa. El monto inicial se va capitalizando periodo a periodo, así por ejemplo, luego del primer periodo se suma el capital más los intereses ganados y este total es el que gana intereses para un segundo periodo. VF = Monto capitalizado (valor final) VA = Inversión inicial (valor actual) r = tasa de interés del periodo n = número de períodos (1+r) n : Factor de capitalización : Factor de descuento 1 (1+r) n

13 Ciclo de vida Identifi- cación Diagnós- tico Evaluación Temario ILPES 13 Tasas de interés compuesta y simple Tasa de interés simple Concepto poco utilizado en el cálculo financiero, es de fácil obtención, pero con deficiencias por no capitalizar la inversión periodo a periodo. El capital invertido es llevado directamente al final sin que se capitalice periodo a periodo con los intereses ganados VF = Monto acumulado (valor final) VA = Inversión inicial (valor actual) r = tasa de interés del periodo n = número de períodos (1+r*n) : Factor acumulación simple : Factor descuento simple 1 (1+r*n)...continuación...

14 Ciclo de vida Identifi- cación Diagnós- tico Evaluación Temario ILPES 14 Tasas de interés compuesta y simple Ejemplo tasa interés compuesta versus tasa interés simple Si se tiene $1.000 hoy y la tasa de interés anual es de 12%. ¿Cuál será su valor al final del tercer año? Con tasa interés compuesta: C = * (1+0,12) 3 = * 1,4049 = Con tasa interés simple: C = * (1+0,12*3) = * 1,36 = r r*3...continuación... Intereses ganados: Año 1: $ 120 Año 2: $ 134 Año 3: $ 151 Intereses ganados: Año 1: $ 120 Año 2: $ 120 Año 3: $ 120

15 Ciclo de vida Identifi- cación Diagnós- tico Evaluación Temario ILPES 15 Tasas de interés compuesta y simple Tasa de interés equivalente Si se tiene una tasa de interés anual r a, la tasa de interés mensual equivalente r m, puede ser calculada usando las siguientes expresiones: Con interés compuesto: Con interés simple: Este ejemplo se hace extensivo a cualquier unidad de tiempo....continuación

16 Ciclo de vida Identifi- cación Diagnós- tico Evaluación Temario ILPES 16 Anualidades Considere un flujo (F 1 ) (anualidad) por montos iguales que se paga al final de todos los años por un período de tiempo n a una tasa r n-1n F1F1 F1F1 F1F1 F1F1 F1F1 Año: Flujos Actualizados: F 1 (1+r) F 1 (1+r) 2 F 1 (1+r) 3 F 1 (1+r) n-1 F 1 (1+r) n

17 Ciclo de vida Identifi- cación Diagnós- tico Evaluación Temario ILPES 17 El Valor Actual de esa anualidad (F 1 ) que implica la suma de todos esos flujos actualizados al momento 0 se define como: Anualidades...continuación...

18 Ciclo de vida Identifi- cación Diagnós- tico Evaluación Temario ILPES 18 Como contrapartida al valor actual de un flujo se tiene: El Valor Final de una anualidad (F 1 ) que implica la suma de todos esos flujos llevados al periodo n y se define como: Anualidades...continuación...

19 Ciclo de vida Identifi- cación Diagnós- tico Evaluación Temario ILPES 19 Ejemplo anualidad: Suponga usted pagó cuotas mensuales de $ por la compra de un auto durante 2 años (24 meses) a una tasa de 1% mensual. ¿ Cuál fue el valor del préstamo? Anualidades...continuación...

20 Ciclo de vida Identifi- cación Diagnós- tico Evaluación Temario ILPES 20 Ejemplo anualidad: Suponga usted trabajará durante 30 años, su cotización en la AFP será de $ mensuales, si la AFP le ofrece una rentabilidad mensual de 0,5% ¿ Cuál será el monto que tendrá su fondo al momento de jubilar? Anualidades...continuación...

21 Ciclo de vida Identifi- cación Diagnós- tico Evaluación Temario ILPES 21 Ejemplo anualidad: Suponga usted comprará una casa que vale hoy $ y solicita al banco un crédito por el total del valor a 15 años plazo (180 meses). La tasa de interés es de 0,5% mensual. ¿ Cuál deberá ser el valor del dividendo mensual ? Anualidades...continuación... Si:Entonces: Así:

22 Ciclo de vida Identifi- cación Diagnós- tico Evaluación Temario ILPES 22 Anualidades Perpetuidad Considérese un flujo (F 1 ) (anualidad) por montos iguales que se paga a perpetuidad. Perpetuidad corresponde a un periodo de tiempo lo suficientemente grande para considerar los flujos finales como poco relevantes dado que al descontarlos al año 0 son insignificantes. El Valor actual de esa anualidad se define como:...continuación...

23 Ciclo de vida Identifi- cación Diagnós- tico Evaluación Temario ILPES 23 Ejemplo perpetuidad: Suponga usted es de esos afortunados que decide jubilar a los 50 años y recibirá una renta vitalicia de $ mensuales hasta que muera. La tasa de interés relevante es de 1% mensual y la empresa que le dará la renta supone una larga vida para usted (suponen podría llegar a los 90, o tal vez 95 o porqué no 100 años). ¿ Cuál es el valor actual del fondo que la empresa debe tener para poder cubrir dicha obligación? Anualidades...continuación En rigor, usando la fórmula de valor actual de una anualidad (no perpetua) se tendría: Si vive 90 años: VA=$ Si vive 95 años: VA=$ Si vive 100 años: VA=$ Todos muy cercanos a $5 millones

24 Ciclo de vida Identifi- cación Diagnós- tico Evaluación Temario ILPES 24 Inflación y tasas de interés Aumento sostenido en el nivel general de precios. Normalmente medido a través del cambio en el IPC Inflación: En presencia de inflación (π), la capacidad de compra o poder adquisitivo de un monto de dinero es mayor hoy que en un año más. $100 Si π = 25% Periodo 0 (Año 0) Periodo 1 (Año 1)

25 Ciclo de vida Identifi- cación Diagnós- tico Evaluación Temario ILPES 25 Inflación y tasas de interés La ecuación que relaciona las tasas nominal y real, es conocida en la literatura con el nombre de igualdad de Fischer: Donde i = tasa de interés nominal r = tasa de interés real = Tasa de inflación AB La tasa de interés (conocida como tasa nominal) deberá incorporar: A. La rentabilidad exigida para hacer indiferente un monto ahora o en el futuro (valor dinero en el tiempo) (tasa real) B. Diferencial que cubra la inflación y mantenga el poder adquisitivo (tasa inflación)...continuación...

26 Ciclo de vida Identifi- cación Diagnós- tico Evaluación Temario ILPES 26 RESUMEN: 2 conceptos: * Costo de oportunidad (tasa interés real) * Poder adquisitivo (inflación) Paso 1: Valora costo de oportunidad, tasa de interés de 10% Paso 2: Valora costo de oportunidad y además; Mantiene poder adquisitivo, inflación de 25% Inflación y tasas de interés $1100$1375 Año 1 Si π = 25% $1000$1100 Año 0 Año 1 Si r = 10%...continuación...

27 Ciclo de vida Identifi- cación Diagnós- tico Evaluación Temario ILPES 27 Inflación y tasas de interés Si tengo $ 500 y un banco me ofrece una tasa de interés nominal anual del 37,5% y me encuentro en una economía donde la inflación es del 25% anual. ¿ Cuál es la tasa real correspondiente ? ¿ Cuánto es mi capital nominal al final del año ? Ejemplo:...continuación...

28 Ciclo de vida Identifi- cación Diagnós- tico Evaluación Temario ILPES 28 Si: ( 1 + i ) = ( 1 + ) * ( 1 + r ) Donde =0,25 y i =0,375 Entonces: (1+0,375) = (1+0,25)*(1+r) (1+r) = 1,1 r = 10% Si el capital inicial es C 0 = $ 500 Entonces: C 1 = C 0 *(1+i) = 500*(1,375) C 1 = $ 687,5 Inflación y tasas de interés...continuación...

29 Ciclo de vida Identifi- cación Diagnós- tico Evaluación Temario ILPES 29 Inflación y tasas de interés...continuación La evaluación de proyectos utiliza tasas de interés reales y por tanto flujos reales, de esta forma se evita trabajar con inflaciones que normalmente tendrían que ser estimadas a futuro con el consiguiente problema de incertidumbre. Nota importante

30 Ciclo de vida Identifi- cación Diagnós- tico Evaluación Temario ILPES 30 Inflación Ejemplo: Inflactar Si costos de inversión de un proyecto formulado en el año 2001 son $7.000 millones pero éste será ejecutado a partir de enero del Se deberá actualizar (inflactar) dicho costo según variación en Indice de Precios al Consumidor (IPC): Si:IPC promedio 2001 = 108,67 IPC promedio 2002 = 111, t t IPC CambioIPC Así: 7.174,6 )1 67,108 38,111 (1(*000.7 t Costo

31 Ciclo de vida Identifi- cación Diagnós- tico Evaluación Temario ILPES 31 Inflación Ejemplo: Deflactar Si costos de inversión de un proyecto formulado en el año 2002 son $ millones pero se necesita saber cual habría sido su costo real en el año 2001 Se deberá deflactar dicho costo según variación en Indice de Precios al Consumidor (IPC): Si:IPC promedio 2001 = 108,67 IPC promedio 2002 = 111,38 Así: 1 1 t t IPC CambioIPC )1 67,108 38,111 (1( t Costo


Descargar ppt "FUNDAMENTOS DE MATEMÁTICA FINANCIERA Curso de Preparación y Evaluación de Proyectos."

Presentaciones similares


Anuncios Google