La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

15 Áreas de figuras 1 Matemáticas 1º ESO Área de una superficie El área de una figura es la cantidad de superficie que ocupa. Estos dos figuras, aunque.

Presentaciones similares


Presentación del tema: "15 Áreas de figuras 1 Matemáticas 1º ESO Área de una superficie El área de una figura es la cantidad de superficie que ocupa. Estos dos figuras, aunque."— Transcripción de la presentación:

1

2 15 Áreas de figuras 1 Matemáticas 1º ESO Área de una superficie El área de una figura es la cantidad de superficie que ocupa. Estos dos figuras, aunque diferentes, están formadas por el mismo número de cuadrados: 10 cada una. La unidad de superficie que hemos empleado ha sido el cuadrado. Medir una superficie es hallar su área. Para ello se compara con otra superficie elegida como unidad, y se averigua el número de unidades que contiene.

3 15 Áreas de figuras 2 Matemáticas 1º ESO Unidades de superficie La unidad fundamental se superficie es el metro cuadrado (m 2 ). La niña esta sentada dentro de un metro cuadrado. Un decímetro cuadrado es la superficie de un cuadrado de 1 dm de lado. Se escribe dm 2 Un centímetro cuadrado es la superficie de un cuadrado de 1 cm de lado. Se escribe cm 2 Un metro cuadrado es la superficie de un cuadrado de un metro de lado. También pueden definirse el decámetro cuadrado (dam 2 ), el hectómetro cuadrado (hm 2 ) y el kilómetro cuadrado (km 2 ). Un milímetro cuadrado es la superficie de un cuadrado de 1 mm de lado. Se escribe mm 2

4 15 Áreas de figuras 3 Matemáticas 1º ESO Relaciones entre las unidades de superficie Observa: En general, una unidad de superficie es 100 veces mayor que la de orden inmediato inferior, y 100 veces menor que la del orden inmediato superior. Para pasar de una unidad a otra se sigue el esquema: m2m2 dm 2 cm 2 hm 2 km 2 mm 2 dam 2 De mayor a menor: Se multiplica por 100 : 100 x 100 De menor a mayor: Se divide entre 100 : 100 1 m 2 = (10 · 10 ) dm 2 = 100 dm 2 1 m = 10 dm 10 · = 100 1 m2m2 dm 2

5 15 Áreas de figuras 4 Matemáticas 1º ESO Unidades agrarias Son las unidades que utilizan agrónomos, agrimensores y agricultores. El área (a) es la superficie de un cuadrado de 10 m de lado. Un piso mediano tiene, aproximadamente, una superficie de un área. El hectárea (ha) equivale a 100 áreas. La superficie de un campo de fútbol es, aproximadamente, una hectárea. El centiárea (ca) es la unidad más pequeña: 1 área es igual a 100 ca La relación entre las unidades agrarias y las del SMD es: 1 a = 100 m 2 = 1 dam 2 1 ha = 10.000 m 2 = 1 hm 2 1 ca = 1 m 2 Ejemplo: 8 ha= 800 a= 80.000 ca = 800 dam 2 = 80.000 m 2

6 15 Áreas de figuras 5 Matemáticas 1º ESO Área del rectángulo y del cuadrado El largo del rectángulo de la figura es 8 cm, y el ancho es 4 cm. ¿Cuántos cm 2 tiene este rectángulo? El área de un rectángulo es igual al producto de su base por su altura: A = b · h El área de un cuadrado es igual al producto del lado por sí mismo. Es decir, es igual al lado cuadrado: A = l 2 8 cm Como cada cuadrado es 1 cm 2, en total habrá 8 · 4 = 32 cm 2. El número de centímetros cuadrados es el área del rectángulo. A = b · h b h 4 cm Como un cuadrado es un rectángulo con la altura igual que la base: l l A = l 2

7 15 Áreas de figuras 6 Matemáticas 1º ESO Área del paralelogramo Al trazar la altura en el paralelogramo ABCD se obtienen dos partes. b h La base y la altura del rectángulo son las mismas que las del paralelogramo. Además, el área de ambas figuras es la misma, luego: A C D B b h R A C D B P A paralelogramo = A rectángulo = b · h El área del paralelogramo de la figura, cuyas medidas vienen dadas en cm, es: 7 2 A = 7 · 2 = 14 cm 2 Ejemplo: Unidas de otra manera podemos formar el rectángulo PBCR. Observa:

8 15 Áreas de figuras 7 Matemáticas 1º ESO Área del triángulo A partir del triángulo ABC podemos dibujar el paralelogramo ABDC. b La base y la altura del triángulo son las mismas que las del paralelogramo. Pero en el paralelogramo hay dos triángulos, luego el área del triángulo será la mitad que la del paralelogramo: D A C B b El área del triángulo de la figura, cuyas medidas vienen dadas en cm, es: 7 2 Ejemplo: h D A B h C A = = 7 cm 2 7 · 2 2

9 15 Áreas de figuras 8 Matemáticas 1º ESO Área del trapecio Partiendo del trapecio EHGF, dibujamos el paralelogramo EPRF. La base del paralelogramo es la suma de las base del trapecio (B + b), y la altura h es la misma. Pero en el paralelogramo hay dos trapecios, luego el área del trapecio será la mitad que la del paralelogramo: G E H F El área del trapecio de la figura, cuyas medidas vienen dadas en m, es: Ejemplo: R A = · 4,5 = 12,8 m 2 3,1 + 2,6 2 h B P b h E F R P B b 3,1 4,5 m 2,6

10 15 Áreas de figuras 9 Matemáticas 1º ESO Área de los polígonos no regulares Para hallar el área de un polígono se descompone en triángulos, uniendo un vértice con los demás: El área del pentágono de la figura es la suma de las áreas de los triángulos T 1, T 2 y T 3. T 1 T 2 T 3 T 1 T 2 El área del cuadrilátero es la suma de las áreas de los triángulos T 1 y T 2. En cada caso, las áreas de los triángulos se hallarán aproximadamente, midiendo su base y altura. Para T 2, por ejemplo, midiendo b y h. b h

11 15 Áreas de figuras 10 Matemáticas 1º ESO Área de los polígonos regulares A partir de un polígono regular podemos obtener un paralelogramo de igual área, como indican las figuras: l a aa La base b del paralelogramo es la mitad del perímetro del polígono y la altura coincide con la apotema del mismo, luego: (el pentágono se descompone en 5 triángulos)

12 15 Áreas de figuras 11 Matemáticas 1º ESO Área de prismas Para calcular el área total del prisma se suma el área lateral al área de las bases. Las caras laterales de este prisma son rectángulos, y las bases son hexágonos. Vamos a calcular su área lateral y su área total. Área lateral: C 1 C 1 = 4,8 cmC 1 C´ 1 = 2,7 cm Al Al = 4,8 × 2,7 = 12,96 cm 2 Área de las base: Lado = 0,8 cmApotema = 0,7 cm Área total: Al Al + Ab Ab = 12,96 cm 2 + 3,36 cm 2 = 16,32 cm 2 A´ A Perímetro: 0,8 cm × 6 = 4,8 cm

13 15 Áreas de figuras 12 Matemáticas 1º ESO Área de pirámides Para calcular el área total de la pirámide se suma al área lateral el área de la base. Las caras laterales de una pirámide son triángulos, y la base un polígono. Vamos a calcular el área lateral y total de la pirámide de la figura. Área lateral: Base = 1 cmAltura = 3,1 cm Al Al = 1,55 cm 2 × 5 = 7,75 cm 2 Área de las base: Apotema = 0,7 cm Área total: Al Al + Ab Ab = 7,75 cm 2 + 1,75 cm 2 = 9,5 cm 2 Perímetro: 1 cm × 5 = 5 cm Es la de cinco triángulos iguales. base 0,7 cm apotema

14 15 Áreas de figuras 13 Matemáticas 1º ESO Área de un círculo Se descompone el círculo en sectores circulares y se colocan como indica la figura: r Si se divide el círculo en un número muy grande de sectores circulares, la figura de la derecha se aproxima a un paralelogramo de base la mitad de la longitud de la circunferencia ( ) y de altura el radio r. Luego: El diámetro de un disco es 30 cm. Calcula su área. A = 3,14 · 15 2 = 3,14 · 225 = 706,5 cm 2 Ejercicio: 30 15 Si el diámetro vale 30, el radio será 15 cm. Luego:

15 15 Áreas de figuras 14 Matemáticas 1º ESO Área de la corona circular Si de un círculo con centro O y radio R recortamos otro círculo más pequeño de radio r y con el mismo centro, se obtiene una figura que se llama corona circular. R r O El área de la corona circular es igual a la diferencia del área del círculo mayor y del círculo menor: Ejemplo: El área de la corona circular de la figura adjunta es: O 1,6 cm 1,2 cm A = 3,14 ·(1,6 2 – 1,2 2 ) = 3,14 · 1,12 = 3,52 cm 2

16 15 Áreas de figuras 15 Matemáticas 1º ESO Área del sector circular El área del sector circular depende de su ángulo. Sector circular de de n grados: nº Sector circular completo: 360º Su área se calcula haciendo una regla de tres: Si a 360º le corresponde a nº le corresponderá x Ejemplo: El área del sector circular de la figura adjunta será:


Descargar ppt "15 Áreas de figuras 1 Matemáticas 1º ESO Área de una superficie El área de una figura es la cantidad de superficie que ocupa. Estos dos figuras, aunque."

Presentaciones similares


Anuncios Google