La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Corriente y resistencia

Presentaciones similares


Presentación del tema: "Corriente y resistencia"— Transcripción de la presentación:

1 Corriente y resistencia
Ley de Ohm Portadores de carga A Corriente a través del área A A ampere

2 Es convencional asignar a la corriente la misma dirección que la del flujo de carga
positiva. Modelo microscópico: n número de portadores por unidad de volumen q carga de cada portador vd velocidad de deriva La carga dQ que, en un intervalo de tiempo dt, pasa a través del área A es: Luego:

3 Rapidez de arrastre en un alambre de cobre de sección transversal igual a
Masa molar: m=63.5 g/mol Densidad del Cu: r=8.95 g/cm3 luego, el volumen ocupado por un mol de Cu es: En un micrón3 de Cu hay aprox x1010 electrones. (ochenta y cinco mil millones de electrones de conducción) Luego, ya que cada átomo de Cu aporta un electrón:

4 Luego: Y si conduce una corriente de 10 A:

5 Resistencia y ley de Ohm
conductor Ley de Ohm + Luego:

6 conductividad resistividad Unidad de resistencia: Ohm

7 Resistividad (a 200 C)

8 Código para las resistencias
dos primeros dígitos tolerancia exponente de la potencia de 10 oro tolerancias plata sin color

9 tolerancia 5% Representación en un circuito

10 pendiente resistencia que no cumple la ley de Ohm

11 Resistencia y temperatura:
Temperatura en grados Celsius coeficiente de temperatura de resistividad

12 Segundo Control; Primera parte. Problema 1
El circuito de la figura consiste en una fuente electromotriz y dos resistencias, R0, de nicromo cuyo coeficiente de temperatura de resistividad es a. El circuito se encuentra inicialmente a temperatura T0. Encuentre el cambio en la intensidad de la corriente I, cuando la temperatura de una de las resistencias aumenta en 20 0C.

13 Segundo Control; Segunda parte. Problema 3
El circuito de la figura consiste en una fuente electromotriz y dos resistencias, R0, de nicromo cuyo coeficiente de temperatura de resistividad es a, en presencia de un campo magnético constante, perpendicular al plano del circuito. El circuito se encuentra inicialmente a temperatura T0. Encuentre el cambio en la fuerza sobre el segmento PQ del circuito, cuando la temperatura de una de las resistencias aumenta en 20 0C.

14 Superconductividad Resistividad de un metal en función de la temperatura

15 Tc Material HgBa2Ca2Cu3O K Tl-Ba-Ca-Cu-O K Heike Kamerlingh-Omes 1911 (holandés) Bi-Sr-Ca-Cu-O K YBa2Cu3O K Nb3Ge K Nb3Sn K Nb K Pb K Hg K Sn K Al K Zn K temperatura crítica Cu, Ag, Au, nunca

16 Potencia eléctrica Q +

17 Potencia eléctrica: P Sistema MKS: volt, ampère, ohm,watt

18 Fuerza electromotriz: fem
Corriente directa: constante + La fuerza electromotriz, fem, de una batería es el voltaje máximo posible que puede suministrar entre sus terminales. Batería Resistencia interna: la batería puede tener una resistencia interna r. + a b luego: d c y entonces resistencia de carga

19 Potencia total de salida:
voltaje en circuito abierto

20 Segundo Control; Primera parte. Problema 2
La resistencia interna de una batería es r. En un circuito que tiene sólo una batería y una resistencia de carga R ¿cuál tiene que ser la resistencia de carga en función de r, para que la potencia que le entrega la batería sea igual a la mitad de la potencia máxima que la batería le puede entregar?

21 La potencia máxima entregada a la resistencia de carga ocurre cuando la
resistencia de carga es igual a la resistencia interna, en efecto: P P luego:

22 P P poca corriente: poca disipación. máx mucha corriente:
mucha disipación interna

23 Resistencias en serie y en paralelo:
+ Para N resistencias en serie:

24 En paralelo: + Para N resistencias en paralelo:

25 Considerar las resistencias siguientes:
Puntos a igual potencial Simetría Por esta resistencia no pasa corriente.

26

27 7 8 3 6 8 4 3 5 6 1 2 2 5 4

28 Leyes de Kirchhoff: Primera ley: CONSERVACION DE LA CARGA. La suma de las corrientes que entran en cualquier unión es igual a la suma de las corrientes que salen de ella. Segunda ley: CONSERVACION DE LA ENERGIA. La suma de las diferencias de potencial aplicadas a todos los elementos del circuito cerrado debe ser igual a cero.

29 + R Primera ley es obvia: existe una sola corriente. Segunda ley: luego:

30 la corriente por aquí es
ya que no hay acumulación de carga. Tres mallas: abcda befcb aefda que proveen 3 ecuaciones + e f + b c Otra ecuación es: a d Las incógnitas son:

31 Las ecuaciones son en este caso:
befcb abcda Dadas las resistencias resolvemos estas tres ecuaciones para encontrar las corrientes

32 Carga de un capacitor: + Circuito RC o bien:

33

34 constante de tiempo

35

36 Intensidad de corriente al cargar un capacitor:

37 Descarga de un capacitor:

38

39

40 Intensidad de corriente al descargar un capacitor:
La corriente tiene signo negativo: va en sentido contrario.

41 Segundo control; segunda parte. Problema 1
Considere el siguiente circuito RC. + S En t=0, estando el condensador completamente descargado, cerramos el interruptor S y luego lo abrimos en t= t (constante de tiempo del circuito) Encuentre la corriente en el circuito en el momento de abrir el interruptor Encuentre la carga del condensador y la corriente en el instante t=2t. Esquematice un gráfico de la corriente entre t=0 y t=2t.

42 Resistividad

43 Resistencia de un cono truncado.

44

45

46 Segundo Control; segunda parte. Problema 2
Con un cilindro homogéneo de radio R, se quiere construir una resistencia que sea igual a la de una esfera homogénea y truncada de radio R,( truncada rebanando a la altura R/2). Si la resistividad del material del cilindro es el doble que la correspondiente a la esfera, ¿cuál deberá ser la altura del cilindro?

47


Descargar ppt "Corriente y resistencia"

Presentaciones similares


Anuncios Google