La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Solución de Problemas Dra. Noemí L. Ruiz Limardo 2006 © Derechos Reservados.

Presentaciones similares


Presentación del tema: "Solución de Problemas Dra. Noemí L. Ruiz Limardo 2006 © Derechos Reservados."— Transcripción de la presentación:

1 Solución de Problemas Dra. Noemí L. Ruiz Limardo 2006 © Derechos Reservados

2 Objetivos de la lección Explicar y demostrar ejemplos de cómo se traducen frases verbales a frases matemáticas Traducir frases verbales a frases matemáticas escribiendo los símbolos matemáticos adecuados que representan el sentido de una expresión verbal Presentar y explicar 4 pasos genéricos para resolver un problema Demostrar cómo se resuelven problemas aplicando los 4 pasos genéricos Resolver problemas aplicando los 4 pasos genéricos

3 Traducción de Frases Verbales a Frases Matemáticas

4 Traducción de frases verbales Escribe en forma matemática: 1. Una cantidad desconocidaUna cantidad desconocida 2. Un número cualquieraUn número cualquiera 3. Un número más otro distintoUn número más otro distinto 4. Un número más cincoUn número más cinco 5. La suma de dos númerosLa suma de dos números 6. Ocho más que un númeroOcho más que un número 7. Tres menos un númeroTres menos un número 8. Tres menos que un númeroTres menos que un número 9. La diferencia entre dos númerosLa diferencia entre dos números 10. Un número disminuido en siete unidadesUn número disminuido en siete unidades

5 Traducción de frases verbales Escribe en forma matemática: 11. Un número dividido por dosUn número dividido por dos 12. La mitad de un númeroLa mitad de un número 13. El doble de un númeroEl doble de un número 14. Tres veces una cantidadTres veces una cantidad 15. r veces un númeror veces un número 16. El doble de un número más cuatroEl doble de un número más cuatro 17. El doble de la suma de un número y cuatroEl doble de la suma de un número y cuatro 18. Mi edad siete años atrásMi edad siete años atrás 19. Una medida restada de tres veces esaUna medida restada de tres veces esa misma medida 20. El producto de dos númerosEl producto de dos números

6 Traducción de frases verbales Escribe en forma matemática: 21. El cuadrado de un númeroEl cuadrado de un número 22. Un número multiplicado por sí mismo seisUn número multiplicado por sí mismo seis veces 23. La suma de tres enteros consecutivosLa suma de tres enteros consecutivos 24. El cociente de dos númerosEl cociente de dos números 25. Cincuenta por ciento de una cantidadCincuenta por ciento de una cantidad 26. El promedio de los salarios de tres personasEl promedio de los salarios de tres personas 27. La suma de tres múltiplos de dos consecutivosLa suma de tres múltiplos de dos consecutivos 28. El triple de un número más el cubo del mismoEl triple de un número más el cubo del mismo número 29. Seis menos que el doble de una cantidadSeis menos que el doble de una cantidad 30. Cinco veces un número más cuatro veces otroCinco veces un número más cuatro veces otro número

7 Pasos para resolver problemas

8 Pasos para resolver un problema No existe una manera única de resolver todos los problemas. Sin embargo, podemos efectuar unos pasos genéricos que ayudan a resolverlos. Los pasos son: 1. Leer y entender el problema. 2. Traducir a una ecuación. 3. Resolver la ecuación. 4. Contestar la pregunta del problema.

9 Pasos para resolver un problema 1.Leer y entender bien la situación del problema -Identificar los datos y la pregunta (lo que te dan y lo que te piden) -Identificar si los datos son suficientes o si tienes más información de la necesaria -Resumir la información 2.Traducir la situación del problema a una ecuación matemática -Traducir la situación verbal a matemáticas -Construir la ecuación que representa la situación del problema

10 Pasos para resolver un problema 3. Resolver la ecuación -Aplicar las propiedades de la igualdad para hallar el valor de la variable 4. Contestar la pregunta del problema -Verificar si se ha obtenido una respuesta lógica -Verificar si la solución obtenida contesta la pregunta del problema o si hay algo más que hacer

11 Ejemplos de aplicación de los pasos para resolver problemas

12 1.Halla dos números cuya suma es dieciocho y uno de los números es ocho unidades más que el otro. Paso 1: Leer y entender el problema Hay que hallar dos números: x, y La suma de los dos números es 18: x + y = 18 Uno de los números es 8 más que el otro: y = x + 8 (No se pueden usar dos variables porque con 2 desconocidas no se puede despejar para hallar el valor de la variable. Tiene que ser una sola variable.) Paso 2: Traducir a una ecuación x + (x + 8) = 18 Solución de Problemas

13 1.Halla dos números cuya suma es dieciocho y uno de los números es ocho unidades más que el otro. Paso 3: Resolver la ecuación x + (x + 8) = 18 2x + 8 = 18 2x = 18 – 8 2x = 10 2 x = 5 Paso 4: Contestar la pregunta Uno de los números es 5 y el otro es 8 más, o sea, 13. Solución de Problemas

14 2.La suma de tres enteros consecutivos es setenta y dos. ¿Cuáles son los enteros? Paso 1: Leer y entender el problema Hay que hallar 3 enteros. Los tres enteros son consecutivos: x, x+1, x+2 La suma de los tres es 72. Paso 2: Traducir a una ecuación x + (x + 1) + (x + 2) = 72 Solución de Problemas

15 2.La suma de tres enteros consecutivos es setenta y dos. ¿Cuáles son los enteros? Paso 3: Resolver la ecuación x + (x + 1) + (x + 2) = 72 3x + 3 = 72 3x = 72 – 3 3x = x = 23 Paso 4: Contestar la pregunta El primer entero es 23. Como los demás son consecutivos, los otros son; 24 y 25. Solución de Problemas

16

17 Copia los problemas a continuación en tu libreta. Resuelve los problemas aplicando los pasos para resolver problemas. Ilustra tu respuesta como los ejemplos que se demostraron anteriormente. Comparte tus respuestas en el foro que se establecerá con este propósito. (Recibirás instrucciones más precisas más adelante.)

18 Problemas 1.Una cuarta parte de un número es tres más que una sexta parte del mismo número.¿Cuál es el número? 2. Carlos es tres años mayor que su hermano. Dentro de cuatro años la suma de sus edades será treinta y tres años. ¿Qué edad tiene cada uno de ellos ahora? 3. El largo de una alfombra rectangular es seis pies más que el ancho. Si el perímetro de la alfombra es cuarenta pies, ¿Cuál es el ancho y el largo?

19 Problemas 4.Halla la medida de los tres ángulos de un triángulo si uno de ellos es veinte grados más que el ángulo más pequeño y el otro ángulo es el doble del ángulo más pequeño. (La suma de los 3 ángulos de un triángulo es 180 grados.) 5. Una camisa costó $13.50 en especial. Si la camisa tenía un 25% de descuento, ¿cuál era el precio regular?

20 Fin de la lección Haz clic aquí para salir

21 Ejemplos: 1.Una cantidad desconocida X Como se desconoce la cantidad o el número se representa con una variable.

22 Ejemplos: 2. Un número cualquiera X Como se desconoce la cantidad o el número se representa con una variable.

23 Ejemplos: 3. Un número más otro distinto x + y Se usan dos variables distintas ya que se desconocen las cantidades y éstas son números distintos. No se puede usar la misma variable porque esto significaría que es la misma cantidad.

24 Ejemplos: 4. Un número más cinco x + 5 No se sabe cuál es el número pero se sabe que a esa cantidad se le está sumando 5 unidades ya que la frase más aquí indica suma.

25 Ejemplos: 5. La suma de dos números x + y No se sabe cuáles son los números por eso se usan dos variables distintas pero si se sabe que se están sumando. No se puede usar la misma variable porque esto significaría que es la misma cantidad. No se puede asumir que es la misma cantidad con la información provista.

26 Ejemplos: 6. Ocho más que un número x + 8 Al decir más que está implícito que primero hay una cantidad a la cual se le está sumando la otra. Como no conocemos el número usamos una variable cualquiera. Se escribe la variable primero ya que está primero esta cantidad y luego se le añade 8.

27 Ejemplos: 7. Tres menos un número 3 - x Menos implica resta. Significa que primero está el número 3 y luego a 3 se le resta un número que desconocemos.

28 Ejemplos: 8. Tres menos que un número x - 3 Menos que implica que hay una cantidad primero, que en este caso desconocemos, a la cual se le ha restado 3.

29 Ejemplos: 9. La diferencia entre dos números x - y Diferencia implica resta. Como no conocemos los números usamos dos variables distintas.

30 Ejemplos: 10. Un número disminuido en siete unidades x - 7 Disminuir implica restar. Como no conocemos el número usamos una variable.

31 Ejemplos: 11. Un número dividido por dos x ÷ 2, x/2, x 2 Para expresar la división se usan diferentes símbolos. Los más usuales cuando tenemos variables son los últimos dos.

32 Ejemplos: 12. La mitad de un número x, 1. x, x/2, x ÷ La mitad de un número equivale a dividir el número por 2 por eso se pueden usar expresiones equivalentes a dividir por 2. También, dividir por 2 equivale a multiplicar el número por ½.

33 Ejemplos: 13. El doble de un número 2x El doble de un número equivale a multiplicar el número por 2. De igual manera, si fuera el triple se multiplica por 3, cuadruple se multiplica por 4, y así sucesivamente.

34 Ejemplos: 14. Tres veces una cantidad 3x La palabra veces implica multiplicación. Tres veces implica multiplicar por 3.

35 Ejemplos: 15. r veces un número rx La palabra veces implica multiplicación. En el caso de r veces como no sabemos el número de veces, aunque sabemos que el número es r, escribimos: rx

36 Ejemplos: 16. El doble de un número más cuatro 2x + 4 El doble de un número se escribe 2x y a esta cantidad se le suma 4.

37 Ejemplos: 17. El doble de la suma de un número y cuatro El doble de una suma, implica que tenemos la suma primero a la cual se ha multiplicado por 2. El paréntesis en este caso es imprescindible para indicar la suma del número y cuatro. 2 (x + 4)

38 Ejemplos: 18. Mi edad siete años atrás x – 7 Siete años atrás implica resta ya que es siete años antes de la fecha de hoy. Como no se conoce la edad se representa con una variable.

39 Ejemplos: 19. Una medida restada de tres veces esa misma medida 3x – x Como no conocemos la medida la representamos con una variable. Si la medida es restada significa que hay algo primero de lo cual estamos restando. Como la medida fue restada de 3 veces esa misma medida, tenemos que usar la misma variable para indicar que es la misma cantidad.

40 Ejemplos: 20. El producto de dos números xy La palabra producto implica multiplicación. Como no sabemos cuáles son los números tenemos que usar dos variables distintas. Cuando usamos variables y deseamos representar que se están multiplicando, solo se unen o se pegan las letras. De igual manera, si vemos dos variables pegadas, esto implica que se están multiplicando.

41 Ejemplos: 21. El cuadrado de un número x 2 El cuadrado de número implica que el número se eleva a la segunda potencia. Esto significa que se multiplica el número por sí mismo la cantidad de veces que indica el exponente.

42 Ejemplos: 22. Un número multiplicado por sí mismo seis veces Un número multiplicado por sí mismo 6 veces implica el número elevado a la sexta potencia. x 6

43 Ejemplos: 23. La suma de tres enteros consecutivos x + (x+1) + (x +2) Para representar la relación entre enteros que son consecutivos se utiliza la suma de 1. Si el primer entero se llama x (porque no sabemos cuál es), el próximo consecutivo es 1 más que lo que sea x, el próximo es 2 más de lo que sea x, y así sucesivamente.

44 Ejemplos: 24. El cociente de dos números x, x/y, x ÷ y y La palabra cociente implica división. El cociente es el resultado de la división.

45 Ejemplos: 25. Cincuenta por ciento de una cantidad x, 1. x, x/2, x ÷ 2, 50%x, 0.50x % de una cantidad equivale a la mitad de esa cantidad, así que se puede escribir como una división por 2. También, se representa un por ciento usando el símbolo de porciento: %. En este caso, se multiplica el 50% por la cantidad x, pero no se puede multiplicar usando el símbolo de %. Para propósitos de realizar cálculos se puede escribir el por ciento en forma decimal. En este caso, no se escribe el símbolo de %.

46 Ejemplos: 26. El promedio de los salarios de tres personas x + y + z 3 Como no sabemos cuáles son los salarios de las 3 personas tenemos que usar 3 variables diferentes. No podemos usar la misma variable porque no sabemos si los salarios son iguales. Para hallar un promedio se suman las cantidades y luego se divide por el total de cantidades, que en este caso es 3 porque hay 3 salarios.

47 Ejemplos: 27. La suma de tres múltiplos de dos consecutivos 2x + (2x + 2) + (2x + 4) Para representar un múltiplo de 2 se multiplica por 2. Como no sabemos cuáles son, usamos la expresión 2x. Si 2x es el primer múltiplo de 2, el próximo consecutivo se halla sumando 2 al primero, luego sumando 4, y así sucesivamente.

48 Ejemplos: 28. El triple de un número más el cubo del mismo número 3x + x 3 El triple de un número es 3x y el cubo es elevar a la tercera potencia, o sea, x 3. Más implica suma.

49 Ejemplos: 29. Seis menos que el doble de una cantidad 2x - 6 El doble de la cantidad es 2x. Seis menos que implica que el doble de la cantidad está primero y a esta cantidad se le va a restar 6.

50 Ejemplos: 30. Cinco veces un número más cuatro veces otro número 5x + 4y Se usan dos variables distintas porque dice otro número.


Descargar ppt "Solución de Problemas Dra. Noemí L. Ruiz Limardo 2006 © Derechos Reservados."

Presentaciones similares


Anuncios Google