La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

La Transformada Z M.I. Ricardo Garibay Jiménez. 8.1 DEFINICIÓN Y RELACIÓN CON LA TRANSFORMADA DE FOURIER EN TIEMPO DISCRETO. Una generalización de la.

Presentaciones similares


Presentación del tema: "La Transformada Z M.I. Ricardo Garibay Jiménez. 8.1 DEFINICIÓN Y RELACIÓN CON LA TRANSFORMADA DE FOURIER EN TIEMPO DISCRETO. Una generalización de la."— Transcripción de la presentación:

1 La Transformada Z M.I. Ricardo Garibay Jiménez

2 8.1 DEFINICIÓN Y RELACIÓN CON LA TRANSFORMADA DE FOURIER EN TIEMPO DISCRETO. Una generalización de la Transformada de Fourier es la transformada Z. Ventajas de la Transformada Z La Transformada de Fourier no converge para todas las secuencias La transformada Z tiene la ventaja de que, en problemas analíticos, el manejo de su notación, expresiones y álgebra es con frecuencia más conveniente El empleo de la transformada Z en señales discretas tiene su equivalente en la transformada de Laplace para señales continuas y cada una de ellas mantiene su relación correspondiente con la transformada de Fourier.

3 Transformada de Fourier La transformada de la misma secuencia tambien se define como Segun la variable compleja continua z La correspondencia entre una secuencia y su transformada se denota como: La transformada de Fourier es simplemente con La transformada de Fourier es la transformada Z tomando Arreglar tamaño en texto y fórmulas

4 Si tomamos La transformada evaluada en los puntos de dicha circunferencia es la transformada de Fourier.

5 8.2 REGION DE CONVERGENCIA La convergencia de la transformada Z depende solamente de entonces: La región en donde se cumple la desigualdad es la región de convergencia. Los valores sobre la circunferencia definida como están dentro de la región de convergencia. La transformada Z es una función analítica en todos los puntos de la región de convergencia; de aquí que la transformada Z y todas sus derivadas con respecto a son funciones continuas en dicha región.

6 8.3 PROPIEDADES DE LA TRANSFORMADA Z La transformada Z posee propiedades que facilitan la solución de ecuaciones en diferencias lineales usando simplemente manipulaciones algebraicas. a)SUPERPOSICIÓN Se compone de las características de: 1)Homogeneidad: 2)Aditividad:

7 si: la transformada Z es: b) CORRIMIENTO A LA DERECHA (RETRASO) La respuesta del sistema se define por: La transformada de la salida y(k) se define a su vez como: Arreglar tamaño en texto y fórmulas

8 Desarrollando: La representación en diagrama de bloques para la propiedad de corrimiento a la derecha se muestra abajo: Arreglar tamaño en texto y fórmulas

9 C) PROPIEDAD DE CONVOLUCIÓN Para el siguiente sistema: Su salida se define como una suma de convolución: Quedando: Factorizando: La transformada queda: Factorizando A demostrar Arreglar tamaño en texto y fórmulas

10 D) PROPIEDAD DE SUMACIÓN Sean las secuencias y si entre ellas es posible establecer la relación: para queda con Arreglar tamaño en texto y fórmulas

11 E) PROPIEDAD DE MULTIPLICACIÓN POR Sean las secuencias y Si entre ellas se establece la siguiente relación: entonces la transformada se determina como sigue: para

12 F) PROPIEDAD DE DERIVACIÓN para Derivando Multiplicando por -z, Arreglar tamaño en texto y fórmulas

13 G) TEOREMA DEL VALOR INICIAL Es posible determinar el término inicial,, de una secuencia, a partir de la transformada correspondiente. Si entonces H) TEOREMA DEL VALOR FINAL Para f(k) dondesea analítica para Arreglar tamaño en texto y fórmulas

14 8.4 TRANSFORMADAS COMUNES: 1) Impulso unitario (delta de Kronecker). Definiendo la secuencia impulso unitario para, su transformada se determina de la siguiente forma: 2) Retraso

15 3) Escalón unitario Definido por La transformada es: para 4) Serie geométrica Multiplicando y dividiendo por a Si se tiene una serie divergente y Si se tiene una magnitud unitaria y Si se tiene una serie convergente a cero y Arreglar tamaño en texto y fórmulas

16 5) Rampa discreta unitaria Multiplicando la ecuación anterior por y considerando, se obtiene : Para una secuencia geométrica se tiene: Derivando con respecto a z: Arreglar tamaño en texto y fórmulas

17 8.4 REPRESENTACIÓN GRÁFICA DE LOS SISTEMAS DISCRETOS LINEALES. Dicha representación emplea tres elementos básicos: 1) Unidad de retraso. 2) Unidad multiplicadora. 3) Unidad de suma. 1)UNIDAD DE RETRASO La relación característica para esta unidad es Obtención de un retraso de dos unidades de tiempo discreto

18 2) UNIDAD MULTIPLICADORA La relación característica para esta unidad es 3) UNIDAD DE SUMA La relación característica para esta unidad es

19 8.5 OBTENCIÓN DE LA RESPUESTA DE UN SISTEMA DISCRETO MEDIANTE TRANSFORMADA Z: LA ANTITRANSFORMADA Z MÉTODO DE EXPANSIÓN EN FRACCIONES PARCIALES. Considérese una función Factorizando Cuando todos los polos de en la ecuación son diferentes Arreglar tamaño en texto y fórmulas

20 El cálculo de los coeficientes es como sigue: La secuencia resulta: Con polos múltiples queda La expansión de F(z), en este caso, tiene la forma: Arreglar tamaño en texto y fórmulas

21 TABLA 8.II PARES DE TRANSFORMADAS Z PARA RAÍCES MÚLTIPLES para 8.6 FUNCIÓN DE TRANSFERENCIA DE SISTEMAS DISCRETOS El concepto de función de transferencia ; la cual se define como la relación de la transformada Z de la salida,, de un sistema entre la transformada Z de su entrada, Arreglar tamaño en texto y fórmulas

22 La expresión general aplicable a la función de transferencia es: Algunos sistemas tipicos: 1. Sistema en cascada

23 2. Sistema inverso La convolución en este caso resulta: Arreglar tamaño en texto y fórmulas

24 3. Sistema realimentado 8.7 ESTABILIDAD DE SISTEMAS DISCRETOS Un sistema discreto es estable cuando produce una salida acotada al aplicársele una entrada acotada Los sistemas discretos estables se caracterizan porque todos sus polos se ubican en el plano complejo z, dentro de un círculo centrado en el origen de radio unitario

25 8.7.1 POLOS DE H(z) Y RESPUESTA TRANSITORIA La localización de los polos de H(z) en el plano z permite caracterizar efectivamente las propiedades de la respuesta para un sistema discreto lineal. A.- Polo real en. La respuesta característica es de la forma Donde A y Φ son constantes obtenidas de la expansión en fracciones parciales y: Cambiar dibujo

26 Casos: 1-. Sistema inestable.La respuesta a impulso es una oscilación creciente en magnitud. 2-. Sistema inestable.La respuesta es una oscilación parecida a un senoide con magnitud constante. 3-. Sistema estable. El resultado es una oscilación parecida a una senoide decreciente en magnitud. Cambiar dibujo

27 POLOS DOMINANTES Son los que tienen una influencia de mayor importancia sobre la respuesta transitoria.Son los polos que están más cerca del circulo unitario. Ej p1 y p RESPUESTA SENOIDAL PERMANENTE DE SISTEMAS LINEALES (FILTROS DIGITALES) Se asume que la entrada a un sistema es una señal senoidal pura.

28 Si consideramos que todos los polos son distintos Se tiene Arreglar tamaño en texto y fórmulas

29 Por ser complejas y De ahi: Antitransformando: Finalmente

30 Suprime la frecuencia Amplifica la frecuencia PERIODICIDAD DE Factor de angulo fase Una característica particular en los sistemas discretos, es que los factores de ganancia y ángulo son periódicos en relación con la frecuencia.

31 8.8.2 INTRODUCCIÓN A FILTROS DISCRETOS. La característica de ganancia de un filtro paso bajas ideal se muestra abajo: 2.- Filtro pasa altas:

32 3.- Filtro pasa banda: Filtro paso bajas :el sistema caracterizado por la ecuación en diferencias y función de transferencia para que la magnitud sea unitaria: Así pues, la función de transferencia resulta: Arreglar tamaño en texto y fórmulas

33 El ancho de banda de un filtro pasa bajas se define como el rango de valores de frecuencia dentro del cual se cumple : Arreglar tamaño en texto y fórmulas


Descargar ppt "La Transformada Z M.I. Ricardo Garibay Jiménez. 8.1 DEFINICIÓN Y RELACIÓN CON LA TRANSFORMADA DE FOURIER EN TIEMPO DISCRETO. Una generalización de la."

Presentaciones similares


Anuncios Google