La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Dr. Álvaro Alberto Aldama Rodríguez 1 y Dr. Aldo Iván Ramírez Orozco 2 1 Consultor Independiente, 2 Profesor Investigador del Centro del Agua del ITESM.

Presentaciones similares


Presentación del tema: "Dr. Álvaro Alberto Aldama Rodríguez 1 y Dr. Aldo Iván Ramírez Orozco 2 1 Consultor Independiente, 2 Profesor Investigador del Centro del Agua del ITESM."— Transcripción de la presentación:

1 Dr. Álvaro Alberto Aldama Rodríguez 1 y Dr. Aldo Iván Ramírez Orozco 2 1 Consultor Independiente, 2 Profesor Investigador del Centro del Agua del ITESM

2 Hidrografía del sistema Grijalva-Usumacinta

3 Introducción La seguridad de una estructura cualquiera está determinada por su respuesta ante un evento que puede presentarse o ser excedido con una probabilidad determinada. En el caso de una presa o una obra para control de inundaciones, dicho evento puede ser la tormenta de diseño o la avenida de diseño. Dado que el evento que incide directamente sobre un vaso o cualquier obra para control de inundaciones es la avenida de diseño, se considera más apropiado caracterizar la seguridad de una presa en términos de su respuesta ante la ocurrencia de dicha creciente.

4 La estimación de avenidas de diseño es el proceso de obtener las características del hidrograma que se utilizará para determinar las dimensiones de una obra. El fin de los métodos de estimación de avenidas de diseño es determinar de la mejor manera posible la magnitud del evento correspondiente a un nivel de riesgo aceptable. La estimación de avenidas se realiza con base en un nivel de riesgo determinado, que se traduce en un periodo de retorno de diseño, que corresponde al número de años en el que, estadísticamente, el evento de diseño puede presentarse o ser excedido. Estimación de avenidas de diseño

5 Enfoques de estimación de avenidas de diseño Hidrometeorológico. Basado en registros de precipitación y la modelación del proceso lluvia- escurrimiento. Hidrométrico. Basado en registros de escurrimiento y el uso de funciones de distribución de probabilidad.

6 Ventajas del enfoque hidrometeorológico Registros de precipitación más abundantes que los de escurrimiento Obtención del hidrograma completo de la avenida

7 Medición de la precipitación en México 5575 estaciones climatológicas con datos históricos (la mayoría con pluviómetro solamente) 77 observatorios meteorológicos 4594 estaciones con coordenadas conocidas Densidad aproximada = 1 estación pluviométrica / 400 km 2 Recomendación mínima de la OMM: Terreno plano1 estación por cada 600 a 900 km2 Terreno montañoso1 estación por cada 100 a 250 km2 México no cumple con la recomendación mínima

8 Ventajas del enfoque hidrométrico Registros de caudales suficientemente prolongados para realizar análisis de frecuencias de gastos máximos anuales. Obtención de estimaciones con significado probabilista. Existencia de una gran diversidad de distribuciones de probabilidad, incluidas las de poblaciones mezcladas, a fin de tomar en cuenta el comportamiento y origen de las avenidas.

9 Desventajas del enfoque hidrométrico Los registros de escurrimiento no son homogéneos (dependen de los cambios de la cuenca). Puede existir incertidumbre en la estimación de los parámetros de la distribución de probabilidad. En los métodos convencionales sólo se obtiene una característica de la avenida, esto es, el gasto pico, y la forma de la avenida de diseño se obtienemayorando la avenida máxima histórica, lo cual en estricto sentido haría imposible asociar un periodo de retorno a la misma.

10 Tormenta elemental en una cuenca Considérese una tormenta elemental que ocurre en una cuenca, sobre un área A, con una intensidad I y una duración d, a una distancia efectiva L de la salida de aquélla. El efecto de la tormenta será un hidrograma de salida, caracterizado por el gasto pico Q p, el tiempo pico t p, y el volumen escurrido V. t i(t)i(t) I d Q(t)Q(t) t QpQp tptp V A L

11 Modelo advectivo-difusivo del proceso lluvia-escurrimiento Para fines de argumentación conceptual, el proceso lluvia- escurrimiento puede ser modelado representando a la cuenca como un metacanal, como lo han propuesto Snell y Sivalpan (1995). Entonces, puede considerarse que el gasto Q a lo largo del cauce principal de la cuenca está gobernado por la siguiente ecuación de advección-difusión: donde t representa el tiempo; x, la coordenada espacial a lo largo del cauce principal; U, una velocidad advectiva efectiva, y D, un coeficiente de difusión efectivo.

12 Gasto pico producido por una tormenta elemental El gasto pico producido por una tormenta elemental puede obtenerse a partir de la solución analítica del problema gobernado por el modelo advectivo-difusivo, que resulta en la siguiente expresión: donde f representa un factor de escurrimiento directo y siendo P e =UL/D un número de Pécléct, y C r =Ud/L un número de Courant, ambos característicos del binomio tormenta elemental- cuenca. Se puede demostrar que la relación t p /d es una función de P e y C r y, por tanto, de L.

13 Caracterización probabilista de una tormenta elemental La descripción más simple que se puede proponer de una tormenta elemental que ocurre en un área fija y tiene una duración fija, es aquélla en la que intervienen dos variables aleatorias: I y L. Sea entonces la densidad de probabilidad conjunta de dichas variables ζ (I,L), a partir de la cual se puede calcular la distribución de probabilidad conjunta, así como las distribuciones marginales de I y L, dadas respectivamente por:

14 Periodo de retorno conjunto Se puede demostrar que el periodo de retorno conjunto de I y L, o dicho de otro modo, el periodo de retorno de la tormenta elemental está dado por:

15 Periodos de retorno de tormentas y avenidas (1) Cuando se realiza un análisis de frecuencias de tormetas máximas anuales, se puede estimar una intensidad de diseño, I D, asociada con un periodo de retorno seleccionado para tal fin, T I D. Ahora bien, empleando la teoría de distribuciones derivadas se puede calcular la distribución de probabilidad del gasto pico producido por una tormenta elemental, a partir de ζ (I,L). Se puede demostrar que los periodos de retorno de diseño de la intensidad y del gasto pico se pueden expresar respectivamente como:

16 Periodos de retorno de tormentas y avenidas (2) Evidentemente, T Qp DT I D, lo cual demuestra que el periodo de retorno de la avenida no es el mismo que el de la tormenta. Pero además, T I,L D T I D, lo cual muestra que es inadecuado caracterizar a una tormenta sólo a través del comportamiento aleatorio de su intensidad.

17 Comentarios sobre el enfoque hidrometeorológico La descripción probabilista de tormentas de diseño a través de la intensidad exclusivamente, es incompleta. Para diseñar hidrológicamente una presa es necesario conocer el periodo de retorno de la avenida de diseño, lo cual no es posible cuando se emplea una tormenta de diseño, dado que su periodo de retorno no coincide con el de la avenida que produce. Los modelos lluvia-escurrimiento no funcionan bien para eventos extremos. Lo anterior resalta las limitaciones del enfoque hidrometeorológico.

18 Diseño o revisión hidrológica de presas Para determinar Z máx y O máx es necesario transitar el hidrograma completo de la avenida de diseño por el vaso. I(t)I(t) Parámetros de diseño: Z máx, O máx O(t)O(t) t t O máx Z máx

19 Análisis de frecuencias tradicional

20 Observaciones sobre el análisis de frecuencias tradicional Se requiere del hidrograma completo para diseñar o revisar la presa. En la práctica, la forma del hidrograma se define en forma arbitraria, mayorando la avenida máxima histórica. La respuesta de los vasos es sensible al gasto pico y también a otros parámetros de la avenida. Se requiere caracterizar probabilistamente toda la avenida.

21 Parametrización de hidrogramas Q t t Q tptp QpQp V Q=Q(t;Q p, t p, V) Hidrograma real Hidrograma parametrizado Triangular QPQP V Q t QPQP tptp Cúbica Q t V QPQP tptp Pearson t Q tptp

22 Hidrogramas triparamétricos hermitianos

23 Solución analítica aproximada de ecuación de tránsito en vasos I(t)I(t) O(t)O(t) t t Omáx Zmáx << 1 S

24 Tránsito de la avenida de diseño de la presa El Molinito, Son. ( ε = ) Para fines prácticos, la solución de orden uno es suficiente Tiempo (h) Almacenamiento (Mm 3 ) Verdadera Solución Orden Cero Orden Uno Orden Dos

25 Análisis de sensibilidad de vasos ante avenidas Q t tptptptp QpQpQpQp V t p, Q p, V (adimensional) Almacenamiento Máximo Volumen Tiempo pico Gasto pico (adimensional ) Descripción biparamétrica ( Q p, V )

26 Sensibilidad de la respuesta del vaso al volumen de las avenidas La gráfica anterior hace evidente que la asignación arbitraria del volumen de escurrimiento de la avenida, que es lo que se haría con el análisis de frecuencias tradicional del gastos pico, tiene una gran influencia en el volumen del superalmacenamiento y por consiguiente en el nivel máximo que alcanza el agua dentro del vaso.

27 Análisis de frecuencias conjunto (1) Periodo de retorno conjunto del hidrograma donde: (función de distribución de probabilidad conjunta) (funciones de distribución de probabilidad marginales)

28 Análisis de frecuencias conjunto (2) Los periodos de retorno individuales están dados por: Gasto pico: Volumen:

29 Problema de optimización no lineal Sea Z m = Z m (Q p,V) la máxima elevación que alcanza el agua en el vaso de una presa cuando se transita un hidrograma caracterizado por el par (Q p,V). Entonces, la avenida de diseño para un periodo de retorno T D dado, corresponderá a la solución del siguiente problema: y a la curva elevaciones-capacidades del embalse, así como a su política de operación.

30 Procedimiento de solución Se pretende determinar el par de valores (Q P,V) que produzca los efectos más desfavorables (máximo nivel Z m ) en la presa por diseñar o revisar. Definir un periodo de retorno de diseño o revisión. Determinar Q p y V para satisfacer T Qp,V =T D. Construir el hidrograma completo con la mejor parametrización de acuerdo con la cuenca en estudio. Transitar el hidrograma por el vaso y determinar Zm (se ven implicadas la topografía, las características del vertedor, las políticas de operación, etc.) Elegir otro par (Q p,V) y repetir el proceso hasta obtener el máximo de Z m. Calcular los periodos de retorno individuales.

31 Revisión del diseño hidrológico de la presa El Infiernillo, Mich. y Gro. Diseño original Q p = 38,777 m 3 /s (Creager) Datos actuales NAMO = msnm NAME = msnm E corona = msnm Una revisión del diseño, en 1982, motivó la modificación de niveles y la sobrelevación de la cortina. Presa El Infiernillo, Mich. y Gro.

32 Análisis de frecuencias de gastos máximos anuales (convencional) El hidrograma de diseño se definió mayorando la avenida máxima histórica (en gasto pico), ocurrida en 1967, con lo cual el volumen de escurrimiento es: Al transitar esta avenida, se alcanza una elevación de la superficie libre del agua de msnm. El NAME se sobrepasa por 2.60 m y queda aún 1.00 m a la corona. V = 12,400 millones de m 3 Para un periodo de retorno de 10,000 años se tiene: Q p = 60,060 m 3 /s

33 Análisis de frecuencias conjunto utilizando marginales Gumbel doble Para un periodo de retorno conjunto de 10,000 años se tiene: Z máx = msnm Q p = 54,000 m 3 /s V = 13,960 millones de m 3 = 3,800 años T V = 4,507 años La presa no es segura para un evento con periodo de retorno de 10,000 años La corona se sobrepasa en 2.73 m.

34 Revisión del diseño hidrológico de la presa Huites, Sin. Diseño original Q p = 30,000 m 3 /s V = 5,240 millones de m 3 Datos actuales NAMO = msnm NAME = msnm E corona = msnm Presa Luis Donaldo Colosio Huites, Sinaloa

35 Análisis de frecuencias de gastos máximos anuales (convencional) El hidrograma de diseño se definió mayorando la avenida máxima anual de 1990, mientras la máxima histórica (en gasto pico) ocurrió en El volumen de escurrimiento es: Al transitar esta avenida, se alcanza una elevación de la superficie libre del agua de msnm, dejando un bordo libre, a la corona, de 1.38 m. V = 5,240 millones de m 3 Para un periodo de retorno de 10,000 años se tiene: Q p = 30,000 m 3 /s La presa parece segura

36 Análisis de frecuencias conjunto utilizando marginales Gumbel doble Para un periodo de retorno conjunto de 10,000 años se tiene: Z máx = msnm Q p = 29,000 m 3 /s V = 5,979 millones de m 3 = 6,034 años T V = 3,135 años La presa es menos segura de lo que se cree

37 Revisión del diseño hidrológico del proyecto La Parota, Guerrero Diseño convencional Q p = 22,993 m 3 /s V = 8,912 millones de m 3 Datos relevantes NAMO (avenidas) = msnm NAMO (estiaje) = msnm NAME = msnm E corona = msnm Sitio para la ubicación de la cortina de la presa La Parota, Guerrero

38 Análisis de frecuencias conjunto Para un periodo de retorno conjunto de 10,000 años se tiene: Z máx = msnm Q p = 23,531 m 3 /s V = 5,726 millones de m 3 La presa es hidrológicamente segura

39 Conclusiones Tanto el enfoque hidrometeorológico como el análisis de frecuencias de gastos máximos tradicionales, para la estimación de avenidas de diseño de presas, son incompletos e inadecuados. Para el caso de vasos, el método propuesto evita la arbitrariedad en la asignación del volumen de la avenida. Se obtiene la solución con los efectos más desfavorables sobre el vaso en particular, cuyas características se involucran en el proceso de estimación de la avenida de diseño

40 Comentarios La teoría multivariada de valores extremos ha sido aplicada y extendida por los autores para resolver problemas de estimación de avenidas de diseño en redes de ríos, en las que comúnmente se requiere el uso de distribuciones de tres o más variables aleatorias. En particular, se ha demostrado que la distribución de probabilidad de poblaciones mezcladas comúnmente conocida como Gumbel doble, satisface las denominadas fronteras de Fréchet y las condiciones de Galambos. Asimismo, se ha desarrollado una metodología para la estimación del parámetro de asociación del modelo logístico de Gumbel, para la construcción de funciones de probabilidad de extremos multivariadas, basada en el concepto de contenidos de probabilidad. Actualmente se trabaja en el problema de presas en cascada y en una estrategia de solución que permita acotar la complejidad computacional de problemas que involucren un número apreciable de variables aleatorias.


Descargar ppt "Dr. Álvaro Alberto Aldama Rodríguez 1 y Dr. Aldo Iván Ramírez Orozco 2 1 Consultor Independiente, 2 Profesor Investigador del Centro del Agua del ITESM."

Presentaciones similares


Anuncios Google