La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

14. Estructura de proteínas, 1. Niveles estructurales en las proteínas Estructura primaria: Secuencia de aminoácidos Estructura secundaria: Plegamiento.

Presentaciones similares


Presentación del tema: "14. Estructura de proteínas, 1. Niveles estructurales en las proteínas Estructura primaria: Secuencia de aminoácidos Estructura secundaria: Plegamiento."— Transcripción de la presentación:

1 14. Estructura de proteínas, 1

2 Niveles estructurales en las proteínas Estructura primaria: Secuencia de aminoácidos Estructura secundaria: Plegamiento básico de la cadena debido a enlaces de hidrógeno entre grupos -CO- y -NH- de la unión peptídica: hélices, láminas y giros Estructura terciaria: Estructura tridimensional de la proteína Estructura cuaternaria: Asociación de distintas subunidades, siendo cada una un polipéptido.

3 5-AAGGGTACCCAACATTTAGTT-3 3-TTCCCATGGGTTGTAAATCAA-5 5-AAGGGUACCCAACAUUUAGUU-3 N Lys.Gly.Ser.Gln.His.Leu.Val C DNA RNA Proteína Estructura primaria

4 Estructura primaria de la insulina

5 Oxidación de puentes disulfuro

6 Reducción y alquilación de puentes disulfuro

7 Determinación del N-término por la reacción de Sanger

8 ---.---.---.Lys.---.---.--- Tripsina ---.---.---.Arg.---.---.--- ---.---.---.Phe.---.---.--- ---.---.---.Tyr.---.---.--- ---.---.---.Trp.---.---.--- ---.---.---.Leu.---.---.--- Quimotripsina Rotura enzimática de polipéptidos

9 Rotura de un péptido por bromuro de cianógeno

10 Degradación secuencial de Edman Ácido diluído Feniltioisocianato PTC-péptido PTH-aminoácido Péptido (n) Péptido (n-1)

11 Hoy día, la mayor parte de estructuras primarias de proteínas se determina a partir de la secuencia de nucleótidos en el genoma. Técnicamente la secuenciación de ácidos nucleicos (en particular, la de DNA) es mucho más sencilla y barata que la de proteínas, estando al alcance de cualquier laboratorio.

12 Estructura primaria de la aldolasa A humana SWISS-PROT http://www.expasy.ch

13 Cálculos a partir de estructura primaria - Número, porcentaje y fracción molar de aminoácidos - Fórmula molecular y peso molecular - pI (punto isoeléctrico) teórico - Absorbancia molar teórica - Vida media teórica - Índices de inestabilidad e hidrofobicidad

14 ProtParam, 1 http://www.expasy.ch

15 ProtParam, 2 http://www.expasy.ch

16 ProtParam, 3 http://www.expasy.ch

17 Predicciones a partir de estructura primaria, 1 - Hidrofobicidad - Estructura secundaria - Retención cromatográfica en HPLC - Residuos accesibles y ocultos - Mutabilidad

18 PYQYPALTPEQKKELSDIAH Valor de hidrofobicidad para la posición n (en este caso, 8): i = n-4 n+4 bibi = -10.5 Escala de hidrofobicidad (según Kyte y Doolittle)

19 Cálculo predictivo de hidrofobicidad (Kyte & Doolittle)

20 Predicciones a partir de estructura primaria, 2: Homologías

21 Dependiendo del grado de homología en su estructura primaria, las proteínas se agrupan en: - Superfamilias: homología en torno a 30 % - Familias: homología superior a un 50 % y la misma función, por lo general. Además, hay pequeños tractos de secuencias comunes a proteínas muy diversas, y que corresponden a ciertos aspectos funcionales (como p.e. modificación postraduccional): son los motivos secuenciales

22 Algunos motivos secuenciales en las proteínas

23 Invariantes en citocromo c Predicciones a partir de estructura primaria, 3: Filogenia y Taxonomía

24 Sustituciones conservadoras en citocromo c

25 Sustituciones radicales en citocromo c

26 Distancias filogenéticas en citocromo c

27 Ángulos de conformación

28 Representación de Ramachandran

29

30

31 -Hélice = -57º = -47º Paso de rosca: 0.54 nm Traslación por residuo: 0.15 nm Residuos por vuelta: 3.6 Enlaces H: n a n+3

32 Hélice 3 10 = -49º = -26º Paso de rosca: 0.59 nm Traslación por residuo: 0.19 Residuos por vuelta: 3

33 N C Mioglobina Proteína globular con alto contenido en -hélice

34 Fibrinógeno Proteína fibrosa con alto contenido en -hélice

35 Propensión estructural hacia -hélices (Chou y Fasman) Estabilizan Ala: 1.420 Gln: 1.110 Glu: 1.510 Leu: 1.210 Lys: 1.160 Met: 1.450 Phe: 1.130 Indiferentes Arg: 0.980 Asp : 1.010 His: 1.000 Ile: 1.080 Trp: 1.080 Val: 1.060 Desestabilizan Asn: 0.670 Cys: 0.700 Gly: 0.570 Pro: 0.570 Ser: 0.770 Thr: 0.830 Tyr: 0.690

36 Prolina y -hélices

37 Hélice de poliprolina

38 Colágeno

39 Estructura = -119 = 113

40 Lámina paralela

41

42 Barril paralelo

43 Lámina antiparalela

44

45

46 Estabilizan Ile: 1.600 Cys: 1.190 Gln: 1.100 Leu: 1.300 Phe: 1.380 Thr: 1.190 Trp: 1.370 Tyr: 1.470 Val: 1.700 Indiferentes Arg: 0.930 Met: 1.050 Desestabilizan Ala: 0.830 Asn: 0.890 Asp: 0.540 Glu: 0.370 Gly: 0.750 His: 0.870 Lys: 0.740 Pro: 0.550 Ser: 0.750 Propensión estructural hacia estructuras (Chou y Fasman)

47 Proteína fibrosa con estructura : Fibroína

48 Proteína globular con estructura : Concanavalina A

49 Giro

50 Propensión estructural hacia giros Estabilizan Asn: 1.560 Asp: 1.460 Cys: 1.190 Gly: 1.560 Pro: 1.520 Ser: 1.430 Indiferentes Arg: 0.950 Gln: 0.980 His: 0.950 Lys: 1.010 Thr: 0.960 Trp: 0.960 Tyr: 1.140 Desestabilizan Ala: 0.660 Glu: 0.740 Ile: 0.470 Leu: 0.590 Met: 0.600 Phe: 0.600 Val: 0.500

51 1ntr Proteína regulatoria

52 Estructuras suprasecundarias - Hélice-vuelta-hélice - Siete hélices transmembrana y hélice anfipática - Cremallera de leucina - Unidad - Meandro - Dedo de Zn - Mano EF

53 N C Hélice-vuelta-hélice

54 Siete hélices transmembrana (bacteriorrodopsina)

55 -hélice anfipática Lado hidrofóbico Lado polar

56 Cremallera de leucina

57 Motivo

58 Meandro

59 Dedo de Zn

60 Mano EF

61 Determinación experimental de la estructura secundaria 1. Métodos físicos: Cristalografía Rayos X, Resonancia Magnética Nuclear (RMN, NMR) en tanto en cuanto resuelven la estructura terciaria Otras técnicas: dicroísmo circular 2. Métodos predictivos a partir de la estructura primaria

62 Propensión de un aminoácido hacia una estructura dada 1. A partir de un conjunto de proteínas de estructura 3D conocida, se forma la siguiente tabla: Total -hélice Estr. Giro Glutamato 282 132 29 43 Aminoácidos 5507 1715 1555 1121 (Se ha puesto el Glutamato como ejemplo; esta tabla se prepara para todos los aminoácidos)

63 2. A partir de la tabla anterior, se calculan las frecuencias relativas de aparición de dicho aminoácido en las tres estructuras: -hélice Estr. Giro Glutamato 0.470 0.104 0.151 Aminoácidos 0.311 0.282 0.204 3. Se calcula entonces la propensión de cada aminoácido hacia una estructura dada por el cociente de dividir la frecuencia relativa de cada estructura por la frecuencia relativa media de todos los amino- ácidos. En el caso del glutamato, P = 0.470/0.311 = 1.511 P = 0.104/0.282 = 0.370 P g = 0.151/0.202 = 0.748

64 PYQYPALTPEQKKELSDIAH Valor de propensión hacia -hélice para la posición n (en este caso, 8): i = n-4 n+4 bibi = 9.07 Escala de propensiones hacia -hélice (según Chou y Fasman)

65

66 PYQYPALTPEQKKELSDIAH Valor de propensión hacia estructura para la posición n (en este caso, 8): i = n-4 n+4 bibi = 8.1 Escala de propensiones hacia estructura (según Chou y Fasman)

67

68 PYQYPALTPEQKKELSDIAH Valor de propensión hacia giro para la posición n (en este caso, 8): i = n-4 n+4 bibi = 9.12 Escala de propensiones hacia giro (según Chou y Fasman)

69


Descargar ppt "14. Estructura de proteínas, 1. Niveles estructurales en las proteínas Estructura primaria: Secuencia de aminoácidos Estructura secundaria: Plegamiento."

Presentaciones similares


Anuncios Google