La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

TECNOLOGICA Matemática I I 3 TECNOLOGIA MECANICA 24 MANTENIMIENTO 79B10341 0 S/R.

Presentaciones similares


Presentación del tema: "TECNOLOGICA Matemática I I 3 TECNOLOGIA MECANICA 24 MANTENIMIENTO 79B10341 0 S/R."— Transcripción de la presentación:

1 TECNOLOGICA Matemática I I 3 TECNOLOGIA MECANICA 24 MANTENIMIENTO 79B S/R

2 La unidad curricular Matemática I cubrirá los contenidos necesarios para que el estudiante adquiera el dominio suficiente sobre los saberes concretos y aplicados en dicha asignatura, saberes que permitirán visualizar en la matemática una herramienta que potencia en la búsqueda de soluciones. Tal planteamiento involucra el desarrollo de una valoración del saber racional y lógico que permita potencializar en el estudiante el saber tanto científico, metodológico y práctico al momento de resolver respectivas situaciones. Unidad 1 El Plano Cartesiano. Duración 3 semanas. Unidad 2 Funciones. Duración 4 semanas. Unidad 3 Limite y Continuidad. Duración 3 semanas. Unidad 4 Derivadas. Duración 4 semanas. Unidad 5 Aplicaciones de las Derivadas. Duración 3 semanas Al finalizar la unidad curricular Matemática I, el estudiante mediante la aplicación de conceptos básicos adquirirá las herramientas para el razonamiento, interpretación y aplicación en los diversos casos que le presenten en las materias avanzadas.

3 I Al finalizar la unidad, el participante manejara el concepto de plano cartesiano para la resolución del problema.. 4 Semanas Previa lectura y exposición de conceptos sobre el Plano Cartesiano, el participante podrá: - Identificar la recta real, desarrollando el concepto de números reales y su clasificación. - Resolver ejercicios que les servirán de para aplicaciones en las matemáticas. - Expresar la distancia entre dos puntos utilizando el plano cartesiano. - Expresar la regla del punto medio definiéndola a partir de la ecuación de la distancia. - Obtener la grafica de una ecuación de dos variables, utilizando el concepto de colección de puntos en un plano. - Obtener la pendiente de una recta, ubicando dos puntos en el plano. Recta Real. Desigualdad, inecuaciones lineales y cuadráticas, valor absoluto. Plano cartesiano, distancia entre dos puntos. Punto Medio. Graficas de Ecuaciones. Rectas en el Plano. Resolución de problemas Discusiones dirigidas. Ejercicios de aula. Talleres prácticos Lista de cotejo, Hoja de evaluación, Pruebas escritas. El Plano Cartesiano.

4 . II Funciones. 3 semanas Al finalizar la unidad, el estudiante estará en condición de realizar cálculos referentes a las funciones y a la construcciones de sus graficas. Lluvia de ideas, resolución de problemas, discurso dirigido, discusión en plenaria. Talleres prácticos Lista de cotejo, Hoja de evaluación, Pruebas escritas. Dada una exposición con ejemplos de concepto sobre funciones, el participante podrá: - Formular el producto cartesiano. - Identificar las relaciones y su clasificación. - Expresar una función defendiéndola como una relación. - Efectuar ejercicios utilizando diferentes tipos de funciones. - Determinar el dominio y rango de una función. - Efectuar operaciones con funciones. - Efectuar operaciones con desigualdades. - Efectuar operaciones con valor absoluto. 1.- Producto Cartesiano. 2.- Relaciones. 2.1 Inyectiva. 2.2 Biyectiva. 2.3 Sobreyectiva. 3.- Funciones. 4.- Tipos de Funciones. 4.1 Composición de funciones. 4.2 Función inversa. 4.3 teorema referentes 5.- Dominio y Rango 6.- Operaciones con Funciones. 7.- Desigualdad. 8.- Valor Absoluto.

5 1.- Limite de una función Definición geométrica Definición analítica. 2.- Propiedades de limites. 2.1 Limites laterales. 3.- Conceptos de infinito. 4.- Limites trigonométricos. 5.- Indeterminaciones de tipo 0/0,,, 0,1 0,. 6.- Continuidad de una función. III Limites y Continuidad. 3 Semanas. Al finalizar la unidad, el estudiante estará en condición de realizar cálculos referentes a los limites y a sus diferentes métodos de resolución. Presentación del contenido por parte del docente.- Asesoría individual. Resolución de problemas Talleres prácticos Lista de cotejo, Hoja de evaluación, Pruebas escritas. Previa lectura de grupos en clase sobre limites y continuidad, el participante podrá: - Enunciar el concepto de limite de una función. - Identificar las propiedades de limites, desarrollando ejercicios. - Enunciar el concepto de infinito, desarrollando ejercicios. - Expresar limites de funciones trigonométricas, desarrollando ejercicios. - Solucionar indeterminaciones que puedan presentarse al buscar el limite de una función. - Determinar la continuidad o no de una función utilizando la definición de limite.

6 Al finalizar la unidad, el estudiante estará en condición de realizar cálculos referentes a las derivadas y a sus diferentes métodos de resolución. IV Derivadas de Funciones 4 semanas Lista de cotejo, Hoja de evaluación, Pruebas escritas. Previa lectura y discusión grupal en clase sobre derivación, el estudiante podrá: Formular la definición de derivadas, utilizando la regla de los cuatro pasos. Interpretar derivadas utilizando su definición. Expresar la derivación de reglas del múltiplo constante, de las potencias, de la constante y la suma, desarrollando ejercicios. Expresar derivadas sucesivas de una función, utilizando las definiciones anteriores. Demostrar la derivación de las reglas del producto, del cociente y de potencias, desarrollando ejercicios. Utilizar la regla de cadena para la derivación, mediante ejercicios. Utilizar la regla del L´HOPITAL para el limite de una función. Definiciones de derivadas. Derivadas laterales. Interpretación de la derivada. Reglas de derivación. Derivadas de orden superior Derivadas implícitas. Derivadas por regla. Derivadas de un producto. Derivadas de un cociente. Derivadas de potencia. Regla de la Cadena. Regla de LHopital Presentación del objetivo y del contenido. Ejercicios Dirigidos. Solución de problemas. Asesoría individual y grupal. Talleres prácticos

7 Al finalizar la unidad, el estudiante estará en condición de realizar cálculos referentes a las aplicaciones de las derivadas y a sus diferentes métodos de resolución. V Aplicación de las derivadas 4 Semanas. Lista de cotejo, Hoja de evaluación, Pruebas escritas. Teorema de Rolle. Teorema de Cauchy. Teorema del valor medio (Lagrnge). Caso particular cuando G(x)=X Función Creciente y Decreciente. Concavidad y punto inflexión. Velocidad y Aceleración. Problemas de Economía. Máximos y Mínimos y punto de inflexión.Criterio de la primera derivada. Criterio de la segunda derivada. Previa lectura y discusión en grupo, el participante podrá: Enunciar el teorema de Rolle y resolverá ejercicios dada una función para detectar la existencia de máximos y mínimos. Enunciar el teorema de Cauchy y resolverá ejercicio dadas dos funciones, para su aplicación. Enunciar el Teorema de Lagrange y resolverá ejercicios para su aplicación. Considerar la derivada para decidir cuando una función es creciente o decreciente. Aplicar la derivada para estudiar la concavidad y puntos de inflexión de una función. Aplicar la derivada para calcular la velocidad y aceleración de un objeto que se mueve en la línea recta. Aplicar derivada a problemas referentes a economía. Presentación del objetivo y del contenido. Ejercicios Dirigidos. Solución de problemas. Asesoría individual y grupal. Talleres prácticos

8 Demidovich, B.(1980). Problemas y Ejercicios de análisis matemático. Editorial Paraninfo. Edwards C. y Penney D. (1997). Cálculo Diferencial e Integral. Prentice Hall. González Jesús, Cálculo IV. (1982). Universidad Nacional Abierta, Caracas. Larson R. (1999). Cálculo. Editorial Mc Graw Hill. Leithold, Louis. (1998). El Cálculo con Geometría Analítica. Editorial Harla. Hoffmann, Laurence. (1985).Cálculo aplicado a la Administración, Economía, Contaduría y Ciencias Sociales. Mc. Graw-Hill, México. Leithold, Louis. (1973).Cálculo con Geometría Analítica. Harla S.A, México. Rojo, Armando. (1974). Algebra 2. El Ateneo, Buenos Aires, Swokowski, Earl. (1982). Cálculo con Geometría Analítica. Wadsworth Internacional Iberoamérica. Weber, Jean. (1985). Matemáticas para Administración y Economía. Harla S.A, México.


Descargar ppt "TECNOLOGICA Matemática I I 3 TECNOLOGIA MECANICA 24 MANTENIMIENTO 79B10341 0 S/R."

Presentaciones similares


Anuncios Google