La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Profesor: Ing. Franklin Castellano Esp. en Protección y Seguridad Industrial.

Copias: 1
Profesor: Ing. Franklin Castellano Esp. en Protección y Seguridad Industrial.

Presentaciones similares


Presentación del tema: "Profesor: Ing. Franklin Castellano Esp. en Protección y Seguridad Industrial."— Transcripción de la presentación:

1 Profesor: Ing. Franklin Castellano Esp. en Protección y Seguridad Industrial

2 1.Calidad en los procesos. 2.Regularidad estadística. 3.Variabilidad de los procesos. Causas de la variabilidad. 4.Capacidad de procesos. Variables de medición del proceso. 5.Técnicas de control. Gráficos de control. Principios básicos de las gráficas de control: límites de control, tamaño de muestra y frecuencia de muestreo. Tipos de gráficos de control. Control por variables. Curva de operación característica. Análisis de los gráficos. 6.Metodología seis sigma. Contenido

3 Gráficos de control Una grafica de control consiste en una linea central y un par de limites de control colocados uno por encima de la línea central y otro por debajo, y en unos valores característicos registrados en la grafica que representa el estado del proceso. Si todos los valores entran dentro de los limites de control se puede decir que el proceso esta controlado, si están fuera de los limites o muestran una forma peculiar, se dice que el proceso esta fuera de control

4 Características de los Gráficos de control 1.Se utilizan para determinar cuando las variaciones observadas de calidad (causas asignables) son mayores que las que causaría la casualidad (causas aleatorias). 2.Permite observar la variación en cuanto a un valor central (media) y en la dispersión de un conjunto de observaciones. 3.Es un registro de calidad de una determinada característica, que muestra si el proceso esta o no en estado estable.

5 Tipos de Gráficos de control VALOR CARATERISTICO NOMBRE Valor continuoGrafica - R (valor promedio y rango) Grafica x (variable de medida) Valor discretoGrafica pn (numero de unidades defectuosas) Grafica p (fracción de unidades defectuosas) Grafica c (numero de defectos) Grafica u (numero de defectos por unidad) X

6 Grafica - R (valor promedio y rango)X Se usa para controlar y analizar un proceso en el cual la característica de calidad del producto que se esta midiendo toma valores continuos, tales como longitud, peso, concentración, entre otros y esta proporciona la mayor cantidad de información sobre el proceso, representa el valor promedio de un subgrupo y R representa el rango del subgrupo. X Limite de control superior= LCS = + A 2 R Valor Central = Limite de control inferior = LCI = – A 2 R R Limite de control superior= LCS = D 4 R Valor Central = R Limite de control inferior = LCI = D 3 R Formulas X X X X

7 1.Seleccionar la característica de calidad que se pueda medir y expresar numéricamente (longitud, peso, temperatura, presión, entre otras), se considera la característica de calidad que afecta el desempeño del producto o servicio.(diagrama de Pareto) 2.Escoger el subgrupo racional, los datos que se grafican se llaman subgrupos racionales, los datos reunidos en forma aleatoria no califican como racionales. 3.La variación dentro los subgrupos se usan para determinar los limites de control, y la variación entre subgrupos para evaluar la estabilidad a largo plazo. 4.Se usan dos esquemas de selección; El método de selección en un instante de tiempo, y el método del lapso de tiempo. 5.La muestra debe ser homogénea ( la misma maquina, operador, tipo de herramienta, molde, entre otros) Recolección de los datos

8 6.Al aumentar el tamaño del subgrupo los limites de control se acercan al valor central lo que hace que el control sea mas sensible a pequeñas variaciones en el promedio del proceso. 7.A medida que aumenta el tamaño del subgrupo, aumenta el costo de inspección.. 8.No hay reglas para establecer la frecuencia de muestreo pero debe ser suficiente para detectar cambios en el proceso (depende de la disponibilidad de la instalación y los costos).Es mejor muestrear bastante al principio y reducir la frecuencia al normalizar el proceso. Recolección de los datos

9 Elementos importantes para realizar el muestreo: 1) Las muestras tomadas deben ser representativas del conjunto producido durante el periodo de trabajo (por lo menos 10 muestras). 2) La frecuencia depende del sistema de producción utilizado por la empresa (si es automático los intervalos de tiempo de toma de muestra deben ser más cortos y la frecuencia mayor, se deben tomar el mayor número de muestras. Si es manual se aconseja alargar los intervalos de tiempo entre una y otra toma de muestra pero la frecuencia es menor). 3) Las muestras deberán ser tomadas en unidades del mismo tipo, grado, tamaño, clase y composición y pertenecer a un mismo lote. 4) Debería realizarse por los menos un muestreo al final de cada periodo y al comienzo del siguiente (ello permitirá establecer análisis de cómo se está comportando el proceso entre una y otra jornada de trabajo). 5) Para el ajuste de máquinas se debe hacer una inspección de la primera pieza o porción del producto obtenido (esto permitirá iniciar el trabajo con el margen de seguridad deseable, para asegurar que el proceso marchará dentro de los límites y especificaciones establecidas de antemano.

10 Como elaborar una Gráfica de control 1. Registro de datos Se divide la muestra en subgrupos de 4 o 5 datos cada uno, de manera uniforme, el tamaño del grupo es entre 2 y 10 en la mayoría de los casos SubgruposX1X2X3X4X5Suma XMediaRango , , , , , , ,622

11 2. Calculo de la media ( )X X= (X1 + X2 + X3 + X4 + X5) / n = Calculo del promedio bruto ( ) X = (X1 + X2 +………..Xn) / N = 30,12 N=10 X 4. Calculo del rango ( R ) R= Max – Min = (47-20) = 27

12 4. Calculo del rango promedio ( R ) R = (R1 + R2 +………..Rn) / N = 26,3 N=10 5. Calculo de los limites de control Grafica X Limite de control superior= LCS = + A 2 R = 30,12 + 0,577* 26,3 = 45,3 Valor Central = = 30,12 Limite de control inferior = LCI = – A 2 R = 30,12 - 0,577* 26,3 = 14,9 X X X

13 5. Calculo de los limites de control Grafica R Limite de control superior= LCS = D 4 R = 2,115*26,3=55,6 Valor Central = R = 26,3 Limite de control inferior = LCI = D 3 R = No se considera Los valores de A2, D3 y D4 son los coeficientes determinados para el tamaño del subgrupo, y se toman de la tabla siguiente

14 COEFICIENTES PARA LAS GRAFICAS X - R

15 6. Elaboración del grafico

16 Lectura de los gráficos de control Se dice que un proceso o variable esta fuera de control cuando varios puntos caen fuera de los limites de control, la cantidad de puntos que pueden determinar esto dependerá de la cantidad de datos considerados, que un solo punto caiga fuera de los limites no es determinante para decidir que la variable estudiada esta fuera de control, esto podría tratarse de una desviación aleatoria producto de un hecho fortuito no controlado 1.- Fuera de control

17 2.- Racha La racha es una secuencia de puntos a un lado de la línea central, el numero de puntos consecutivos se llama longitud de la racha. Una longitud de 7 puntos se considera normal, se consideran anormales los siguientes casos: Al menos 10 de 11 puntos consecutivos ocurren del mismo lado de la línea central Al menos 12 de 14 puntos consecutivos ocurren del mismo lado de la línea central Al menos 16 de 20 puntos consecutivos ocurren del mismo lado de la línea central

18 3.- Tendencia La tendencia es una serie consecutiva de puntos en forma ascendente o descendente, que sin salirse de los limites permiten advertir a la organización sobre como el desarrollo del proceso esta alejándose progresivamente del valor medio esperado hasta llegar a salirse de control, en cualquiera de los casos puede convertirse en una desviación en el proceso.

19 4.- Acercamiento a límites de control Cuando 2 de 3 puntos se acercan a las líneas limites, se puede considerar que el proceso aunque esta controlado no se desarrolla en forma normal

20 5.- Acercamiento a línea central Aunque se puede pensar que un grafico de control de esta forma indica que el proceso esta controlado, ya que sus valores están agrupados alrededor de la media, no es así, esto se debe a una mezcla de la información de diferentes poblaciones en los subgrupos, lo cual hace que los limites de control sean demasiado amplios

21 6.- Periodicidad También se considera como anormal que el grafico muestre la línea de desarrollo con tendencias ascendentes y descendentes alternadas en intervalos casi iguales

22 EJERCICIO Para investigar el perfil de variación de ciertas partes de un proceso de maquinado, se midieron las dimensiones de las partes 4 veces al dia, a las 9:00, a las 11:00, alas 14:00 y a las 16:00. Determine si el proceso es normal y esta controlado Dias ,552,9 53, ,853,552,4 352,852,952,752,8 452,9 552,852,952,753,1 652,653,453,153,3 753,553,652,852,7 853,153,353,552,7 953,453,1 1053,253,453,152,9

23 1. Registro de datos NX1X2X3X4Suma XMediaRango 152,552,9 53,5211,853, ,853,552,4211,752,91,1 352,852,952,752,8211,252,80,2 452,9 211,652,90 552,852,952,753,1211,552,90,4 652,653,453,153,3212,453,10,8 753,553,652,852,7212,653,20,9 853,153,353,552,7212,653,20,8 953,453,1 212,753,20,3 1053,253,453,152,9212,653,20,5 Promedio53,00,6

24 2. Calculo de la media ( )X X= (X1 + X2 + X3 + X4) / n = Calculo del promedio bruto ( ) X = (X1 + X2 +………..Xn) / N = 53 N=10 X 4. Calculo del rango ( R ) R= Max – Min = (53,5-52,5) = 1

25 4. Calculo del rango promedio ( R ) R = (R1 + R2 +………..Rn) / N = 0,6N=10 5. Calculo de los limites de control Grafica X Limite de control superior= LCS = + A 2 R = ,73* 0,6 = 53,44 Valor Central = = 53 Limite de control inferior = LCI = – A 2 R = 53- 0,73* 0,6 = 52,56 X X X Grafica R Limite de control superior= LCS = D 4 R = 2,3*0,6=1,38 Valor Central = R = 0,6 Limite de control inferior = LCI = D 3 R = No se considera

26 Análisis: El proceso esta controlado pero no es normal, se presentan rachas de valores por periodos sobre o bajo la media, también hay puntos en el grafico R cercanos a los limites de control


Descargar ppt "Profesor: Ing. Franklin Castellano Esp. en Protección y Seguridad Industrial."

Presentaciones similares


Anuncios Google