La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Operaciones entre vectores I: Suma y resta El presente material contiene ejercicios y explicaciones. Cuando corresponda desarrolla el ejercicio que se.

Presentaciones similares


Presentación del tema: "Operaciones entre vectores I: Suma y resta El presente material contiene ejercicios y explicaciones. Cuando corresponda desarrolla el ejercicio que se."— Transcripción de la presentación:

1 Operaciones entre vectores I: Suma y resta El presente material contiene ejercicios y explicaciones. Cuando corresponda desarrolla el ejercicio que se te pide, para lo cual necesitarás tu cuaderno y papel (así que ya, ya,….. a buscarlos).

2 Primero debemos dominar el cómo determinar las coordenadas de un vector, cuando este tiene su inicio en un punto distinto al del origen del sistema de coordenadas.

3 Como P tiene su inicio en el origen del sistema, es fácil dar sus coordenadas:

4 En este caso no es tan simple, pero tampoco es tan, tan difícil, sólo se requiere trasladar el vector (sin cambiar su largo, ni su inclinación) al origen del sistema.

5 Otra alternativa es mover el sistema al inicio del vector. Como vez obtenemos el mismo resultado que antes: P=(3;-1)

6 Hora haces algo parecido, pero siguiendo el camino paralelo a Y ( notarás que conté con un número negativo, esto se hace así porque hemos contado hacia abajo, espero que en los ejemplos que siguen, esto te quede más claro): Cuentas cuántas unidades numéricas hay DESDE EL ORIGEN del vector hasta su CABEZA, siguiendo NO el camino del largo del vector, sino la dirección paralela al eje X, como lo verás ahora: Cuando trabajamos en un problema, no podrás mover el sistema que aparece dibujado en la hoja, por razones obvias, no es un power point, lo que se hace es lo siguiente: Entonces se trata del vector: P=(3,-1) Luego:

7 P=(-3,-2) P=(3; P=(3;2) P=(-3 P=(-3, P=(-3,2) Ejercicio: Antes de seguir, intenta encontrar las coordenadas de cada vector.

8 A menos que se especifique otra cosa consideraremos que vectores como: P1 v/s P2 y P3 v/s P4 son el mismo vector, es decir 2 vectores serán iguales, si tienen el mismo largo y la misma dirección no importando en que lugar esté su inicio.

9 Suma y resta de vectores en el plano

10 Sumando 2 vectores Método geométrico

11 1) Para sumar P1 y P2 geométricamente se debe llevar el inicio de uno de ellos a la cabeza del otro (cualquiera de ellos) 2) Luego se une mediante un nuevo vector, el punto de inicio del vector no trasladado con la cabeza del que se trasladó punto de inicio de vector NO trasladado cabeza del vector trasladado El vector que ha resultado (rojo) es el vector suma de los otros dos vectores. Fíjate que, así como sumar un número con otro, da por resultado un número; sumar un vector con otro da por resultado un vector.

12 Sumando 2 vectores Método Analítico (numérico)

13 Usemos el ejemplo anterior, para que compruebes que ambos métodos dan el mismo resultado.

14 Se ve que las coordenadas del vector construido por el método geométrico coinciden con las coordenadas del método analítico.

15 Lo ideal es que aprendas las dos formas de encontrar la suma de dos vectores, pues hay problemas que se resolverán más fácilmente si eres hábil para graficar. Ojo: El método gráfico es una buena ayuda para resolver los problemas, pero siempre deberás usar el método numérico, pues habitualmente en una prueba no hay tiempo para construir gráficos exactos y sumar gráficamente requiere de un muy buen gráfico.

16 Resta entre 2 vectores Método geométrico Recuerda que en una resta de números, se denomina sustraendo a la cantidad que resta y minuendo a la cantidad sobre la cual se resta. Este mismo vocabulario se usa para la resta de vectores. MinuendoSustraendo

17 Antes de aprender a restar vectores, es necesario que aprendas el concepto de VECTOR OPUESTO ( vector contrario)

18 Dado un vector cualquiera: Llamaremos Vector opuesto de P al nuevo vector que se forma al rotar P en 180º Es decir tiene el mismo largo, pero dirección contraria Vector opuesto de P 180º

19 La resta vectorial entre P2 y P1 equivale a la SUMA de P2 con el opuesto de P1 Realizar: P2-P1

20 Resta entre 2 vectores: Método geométrico resumido

21 Fíjate en el vector negro y en el vector rojo, luego has un clic. ¿ lo has visto? – Como son vectores coincidentes, significa que tienen en mismo largo y la misma dirección, luego como ya se explicó, se trata entonces del mismo vector. Como el vector rojo es la resta entre P2 y P1, y este es equivalente al vector negro, se tendrá que el vector que representa tal resta es el que se traza desde la cabeza del vector SUSTRAENDO a la cabeza del vector MINUENDO, cuando tales vectores (que se deben restar), tiene su inicio en el mismo punto del plano, tal como ocurre con P1 y P2. Estarás de acuerdo en que esta segunda forma de visualizar el vector resta es más barata que la primera, pues aquí la resta sale en un solo paso. Por lo que es el método de resta geométrica más recomendada.

22 Resta entre 2 vectores: Método analítico o numérico:

23

24 Más ejemplos: En las siguientes ejemplos geométricos, fíjate que la gran diferencia entre suma y resta es que, para la suma se elige uno de los vectores y se traslada poniendo su pie (inicio) sobre la cabeza del otro, para luego unir el pie de uno con la cabeza del otro, o sea: Traslado: PIE - CABEZA Trazado: PIE - CABEZA Para la resta en cambio las etapas son: Traslado: PIE - PIE Trazado: CABEZA sustraendo (s) – CABEZA minuendo (m)

25 Sumar y restar geométricamente los siguiente vectores. Sumando: Suma: Traslado: PIE-CABEZA Suma: Trazado: PIE-CABEZA

26 Sumar y restar geométricamente los siguiente vectores. Restando: Resta: Traslado: PIE - PIE Resta: Trazado: CABEZA s - CABEZA m sólo si se trata de: A-B o bien … en caso de ser: B-A

27 Antes de seguir intenta encontrar el vector B-A, geométricamente, esto es sin darle importancia a los números de las coordenadas. A B Solución:

28 También podría haber sido: A B Resultado anterior ¿ Lo viste ? Era el mismo vector

29 Antes de continuar, realiza la operación: B+A A B Solución:

30 Antes de continuar intenta sumar los vectores: Solución: 1) Traslado: PIE - CABEZA 2) Trazado: PIE - CABEZA

31 Antes de continuar intenta encontrar el vector resta: B - A Solución: 1) Traslado: PIE – PIE: El problema ya trae hecha esta parte 2) Trazado: CABEZA s – CABEZA m:


Descargar ppt "Operaciones entre vectores I: Suma y resta El presente material contiene ejercicios y explicaciones. Cuando corresponda desarrolla el ejercicio que se."

Presentaciones similares


Anuncios Google