La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

El compás Rumbo cuadrantal y circular Rumbo Demora Marcación Utilidad de las demoras Utilidad de las marcaciones Método para hallar la demora de un objeto.

Presentaciones similares


Presentación del tema: "El compás Rumbo cuadrantal y circular Rumbo Demora Marcación Utilidad de las demoras Utilidad de las marcaciones Método para hallar la demora de un objeto."— Transcripción de la presentación:

1

2 El compás Rumbo cuadrantal y circular Rumbo Demora Marcación Utilidad de las demoras Utilidad de las marcaciones Método para hallar la demora de un objeto a partir de su marcación Declinación magnética Variación magnética Desvío Rumbo verdadero Rumbo de aguja Corrección total Modo de calcular la corrección total con los datos de la carta Las coordenadas geográficas: Longitud y latitud Navegación de estima Apartamiento Derrota Loxodrómica Derrota Ortodrómica SITUACIÓN POR DEMORAS Y ENFILACIONES Situación por dos demoras simultáneas a un punto de la costa Situación por distancia y demora Situación por dos distancias simultáneas Situación por sonda y demora Situación por enfilación y demora Situación por dos enfilaciones Situación por dos demoras no simultáneas a un mismo punto de la costa CLIC

3 Situación por dos demoras no simultáneas a dos puntos de la costa Cálculo del Rumbo de agujaCálculo del Rumbo de aguja Cálculo del Rumbo verdaderoCálculo del Rumbo verdadero Cálculo del punto de estima cuando se ha navegado a un solo Rumbo Cálculo del punto de estima cuando se ha navegado a varios Rumbos Consecuencias de navegar sin considerar el abatimiento por corriente SITUACIÓN CON VIENTOS Y CORRIENTES Abatimiento Estima directa con abatimiento Estima directa con corriente Ejemplo de estima directa en el seno de una corriente conocida Navegación con abatimiento por viento en el seno de una corriente conocida Ejemplo de estima directa con abatimiento por viento en el seno de una corriente conocida Casos que se pueden dar al calcular una estima directa Modo de hallar el rumbo efectivo y la velocidad efectiva en el seno de una corriente conocida Modo de hallar la intensidad horaria y el rumbo de una corriente desconocida Rumbo verdadero y velocidad de máquinas que hemos de llevar para llegar de A a B en un tiempo concreto navegando en el seno de una corriente conocida Estimas inversas Ejemplo de estima inversa Situación por dos demoras no simultáneas a dos puntos diferentes y afectados de abatimiento por viento Situación por dos demoras no simultáneas a un mismo punto o dos puntos distintos de la costa en el seno de una corriente conocida Cálculo de una corriente desconocida partiendo de una situación exacta, navegando a un solo rumbo y situándonos más tarde con dos demoras no simultáneas Latitudes aumentadas Ejemplo de estima inversa con latitudes aumentadas Problema de navegación patrón de yateProblema de navegación patrón de yate nº 1 Problema de navegación patrón de yateProblema de navegación patrón de yate nº 2 Proyecciones CLIC (aquí) Volver índice 1 4ª PARTE

4 CLIC EJEMPLO DE ESTIMA DIRECTA EN EL SENO DE UNA CORRIENTE CONOCIDA Indice

5 EJEMPLO DE ESTIMA DIRECTA EN EL SENO DE UNA CORRIENTE CONOCIDA Siendo HRB: 10:00, en situación: l =04º-27,3N, y L = 72º -18,3 W, con Ra = 244º, v = 12, dm = 4 NW (-), Δ = -2, Y con corriente Rc = N30E, e intensidad horaria (Ih) = 3, se pide la situación a HRB = 12:00. Y la distancia recorrida. 1º)- Hacemos estima directa con nuestro rumbo, tiempo navegado y velocidad, para ellos calculamos Rv, y la distancia: Tenemos que hacer dos loxodrómicas; 1ª)- la correspondiente al tiempo navegado con nuestro rumbo y velocidad y 2ª)- la correspondiente al rumbo de la corriente y su intensidad horaria. Como nos dan un Rumbo de aguja, hemos de transformarlo en Rumbo verdadero…Tenemos para ello la declinación magnética y el desvío ¿Podemos ver otro ejemplo? Yes, sir CLIC Rv = Ra + ct; Ct = dm + Δ = 4(-) + 2(-) = 6(-) = 238 – 180 = S58W Con Rv y D, calculamos apartamiento y Δl: CLIC Dist. = v · t = 12 · 2 = 24 Calculamos la distancia recorrida en función del tiempo y la velocidad… CLIC Ahora, con Rv y D calculamos el apartamiento y la diferencia de latitud CLIC Ahora hacemos la loxodrómica de la corriente CLIC 2º)- Hacemos una estima de la corriente, con su rumbo e intensidad horaria por el tiempo que dura la navegación, que son 2 horas. Rc = 30º; Ih = 3; distancia = 3 · 2 = 6 CLIC Sumamos los Apartamientos y los Δ de latitud de las dos loxodrómicas, la de nuestra navegación y la de la corriente 3º)- Sumamos los A y l respectivos de nuestro rumbo y distancia navegada a los del Rc e intensidad horaria durante el tiempo navegado: CLIC Ahora calculamos la diferencia de Longitud. Para ello calculamos la latitud media. La podemos hallar dividiendo entre 2 al incremento de latitud y sumándoselo a la latitud de salida, o bien sumándo las latitudes de salida y llegada y dividiendo entre 2. El resultado es el mismo. CLIC 4º)- Calculamos la latitud de llegada para después calcular la latitud media y así poder calcular L: CLIC Indice

6 La distancia la resolveremos por el teorema de Pitágoras La distancia la resolvemos con el teorema de Pitágoras: Sustituyendo valores: A Δ l R D CLIC ¿Por qué por Pitágoras y no con la fórmula: Buena pregunta… ¿Y qué rumbo pondrías en la formula? Pues… no sé. CLIC No podemos emplear la fórmula que tú comentas porque la latitud final ha sido el resultado de dos Rumbos; por un lado el de la corriente, y por otro nuestro rumbo propio. Para aplicar esa fórmula habría que introducir un solo Rumbo: el Rumbo efectivo de corriente. CLIC Rc Rv R efectivo ΔlΔl D A R Con el Rumbo efectivo de corriente si que podemos aplicar la fórmula (R efectivo) CLIC Como tenemos el Apartamiento y el Δl finales, resolvemos la distancia con el teorema de Pitágoras… repito CLIC ¿Qué? ¿Está ya contento…? ¡Joder, que susto!... Pues no, aún voy a proponer otro ejemplo Adelante… no se corte… CLIC Pero no tenemos el valor del Rumbo final Indice

7 CLIC NAVEGACIÓN CON ABATIMIENTO POR VIENTO EN EL SENO DE UNA CORRIENTE CONOCIDA Indice

8 EJEMPLO DE ESTIMA DIRECTA CON ABATIMIENTO POR VIENTO Y EN EL SENO DE UNA CORRIENTE CONOCIDA Tendremos que hacer dos estimas, la de la corriente y la de nuestro rumbo verdadero, teniendo en cuenta el abatimiento por el viento Si y no. Mira, nuestra situación final es el resultado de dos navegaciones cuyos rumbos son una línea dibujada sobre la superficie del Mar (Rumbo de superficie; corregido por abatimiento), o dibujada sobre el relieve del fondo del Mar (Rumbo sobre el fondo; corregido por corrientes), o bien las dos cosas; la línea que dibujada sobre la carta náutica es un rumbo verdadero, pero corregido por abatimiento y por corriente (Rumbo efectivo de viento y corriente).De esas tres maneras te puedes referir a un rumbo verdadero según las correcciones que tenga por abatimiento, por corriente o por abatimiento y corriente. En este caso el rumbo verdadero lo convertimos en rumbo efectivo corregido por abatimiento. Después, si queremos, podemos corregir ese rumbo efectivo por abatimiento a Rumbo efectivo de corriente. Y, por supuesto, no nos olvidemos que el Rumbo verdadero es igual a: Ra + Ct CLIC Rv efectivo corregido por abatimiento, o rumbo de superficie Y velocidad de máquinas Rc Ihc Rv ab CLIC Pero…. Entonces…. ¿Cuántos Rumbos hay? No lo entiendo… CLIC ¡Ja, Ja, Ja! ¡Pareces tonto, Tintín…! Deberías llamarte Tontín… ¡Ja, Ja, Jaaa! CLIC Vamos a ver si te quedas con la copla… Pimpollo CLIC Indice …Esto es un follón! ¿Rumbo de superficie es lo mismo que rumbo efectivo? Vaya… cuando empiezas a entender algo… surge otro algo más complicado que lo complica más… Ahora vamos a ver un ejemplo de estima directa con abatimiento por viento y en el seno de una corriente conocida…

9 Rv efectivo corregido por abatimiento, o rumbo de superficie Y velocidad de máquinas Rc Ihc Rv ab Rumbo efectivo de corriente y abatimiento O rumbo sobre fondo CLIC …Mmmm… Sí. Una estima es la correspondiente a lo que nos traslada la corriente, con su Rumbo e intensidad horaria, y la otra es la correspondiente a nuestro Rumbo verdadero, corregido por abatimiento, y nuestra velocidad. CLIC …Creo que ya lo voy pillando. ¿Podrías poner un ejemplo práctico con eso del Rumbo efectivo? CLIC RUMBO MAGNÉTICO: Es un rumbo de aguja que no tiene en cuenta el desvío. Si tienes un R magnético tienes que sumarle el desvío para transformarlo en Ra y así poder usarlo en navegación. RUMBO DE AGUJA: Es un rumbo magnético más el desvío. Es el rumbo del compás náutico. Está afectado por la declinación magnética, la variación magnética y el desvío,. Ra = Rv – Ct (Y Ct = Dm + Vm + Δ) RUMBO VERDADERO: Es el rumbo trazado sobre la carta para ir de un punto a otro. Tiene como Norte el Norte geográfico (Norte verdadero). Rv = Ra + Ct RUMBO EFECTIVO: Es un rumbo verdadero que resulta de la influencia de agentes externos como puede ser una corriente o un abatimiento por viento. Puede ser R efectivo de abatimiento si es el resultado de la influencia del viento, también le puedes llamar Rumbo de superficie… teniendo en cuenta que esa superficie puede estar en movimiento si hay una corriente; R efectivo de corriente si es el resultado de una corriente; o R efectivo de viento y corriente si es el resultado de ambos fenómenos. Al Rumbo efectivo final, influenciado por todo lo que pueda influir en el Rumbo verdadero, se le llama también Rumbo sobre fondo: a diferencia de la superficie, el fondo no se mueve, por tanto el Rumbo sobre fondo es un Rumbo d-e-f-i-n-i-t-i-v-o corregido por vientos y corrientes Indice ¿Visualizas las dos estimas para conocer la situación al final de una navegación con abatimiento y corriente Pues bien, el tema de la nomenclatura de los Rumbos se reduce a lo siguiente:

10 RUMBO VERDADERO: Es el rumbo trazado sobre la carta para ir de un punto a otro. Tiene como Norte el Norte geográfico (Norte verdadero). Rv = Ra + Ct (Trazado sobre la carta el barco lleva un Rumbo S85W) RUMBO EFECTIVO: Es un rumbo verdadero que resulta de la influencia de agentes externos como puede ser una corriente o un abatimiento por viento. CLIC N S EW La corrección total vale 0º; nuestro Ra es S85W. Como no hay abatimiento ni corriente nuestro rumbo verdadero es S85W, y coincide con el Rumbo efectivo Indice

11 Puede ser R efectivo de abatimiento si es el resultado de la influencia del viento, también le puedes llamar Rumbo de superficie… El Barco lleva un Rv S85W pero el fuerte viento le hace abatir 40º Br (por tanto con signo -) y, consecuentemente, su R efectivo por abatimiento por viento es S45W CLIC WE S N La corrección total vale 0º; nuestro Ra es S85W. Y nuestro rumbo verdadero es S85W Como no hay abatimiento ni corriente nuestro Rumbo efectivo coincide con el Rumbo verdadero La corrección total vale 0º; nuestro Ra es S85W. Como tenemos un viento que nos abate 40ºBr, nuestro Refectivo es: Rv + ab = S85W + 40 (-) = S45W …O Rumbo de superficie… CLIC Si, porque puede ser un Rumbo que sobre la carta nos lleve de A a B, corregido por abatimiento, pero puede ocurrir que estemos inmersos en una zona de corriente. En cuyo caso… CLIC Indice

12 WE S N La corrección total vale 0º; nuestro Ra es S85W. Y nuestro rumbo verdadero es S85W Como no hay abatimiento ni corriente nuestro Rumbo efectivo coincide con el Rumbo verdadero La corrección total vale 0º; nuestro Ra es S85W. Como tenemos un viento que nos abate 40ºBr, nuestro Refectivo es: Rv + ab = S85W + 40 (-) = S45W R efectivo de viento y corriente si es el resultado de ambos fenómenos. Al Rumbo efectivo final, influenciado por todo lo que pueda influir en el Rumbo verdadero, se le llama también Rumbo sobre fondo: a diferencia de la superficie, el fondo no se mueve, por tanto el Rumbo sobre fondo es un Rumbo d-e-f-i-n-i-t-i-v-o corregido por vientos y corrientes CLIC Tengo la sensación de que esto le suena a chino… Somos una colonia de sifonóforos llevada por la corriente… La corrección total vale 0º; nuestro Ra es S85W. Como tenemos un viento que nos abate 40ºBr, nuestro Refectivo de viento es: Rv + ab = S85W + 40 (-) = S45W. Pero ese no es nuestro rumbo definitivo, o rumbo sobre fondo ya que navegamos en el seno de una corriente dirección ESTE que nos empuja. Siendo el Rumbo sobre fondo, o Rumbo efectivo de viento y corriente S60E CLIC Rumbo efectivo de viento y corriente Rumbo sobre fondo CLIC Indice

13 Seguimos con el problema… Tenemos una hora reloj de bitácora, y una situación de salida Vamos con un rumbo de aguja = 138º, y una velocidad de 10 Tenemos una declinación magnética = 4ºW Y un desvío = -1º Existe una corriente conocida de Rumbo = N40E Su intensidad horaria es 2 Y, por último, tenemos un viento NE que nos produce un abatimiento = 2º EJEMPLO DE ESTIMA DIRECTA CON ABATIMIENTO POR VIENTO Y EN EL SENO DE UNA CORRIENTE CONOCIDA CLIC Siendo HRB = 07:30 Situados en: l = 43º-25N; L = 74º-18,3W CLIC Con Ra = 138º; v = 10 CLIC dm = 4º NW (-); = -1 CLIC Rc = N40E; Ih = 2 CLIC con viento NE; ab = 2º Se pide situación en HRB = 10:20 Indice

14 Tendremos que hacer dos estimas, la de la corriente y la de nuestro rumbo verdadero, teniendo en cuenta el abatimiento por el viento CLIC …Ya … CLIC La primera estima que hacemos es la de nuestro Rumbo y distancia navegada. Primero hallamos el Rumbo verdadero (Rv), EJEMPLO DE ESTIMA DIRECTA CON ABATIMIENTO POR VIENTO Y EN EL SENO DE UNA CORRIENTE CONOCIDA Siendo HRB = 07:30 Situados en: l = 43º-25N; L = 74º-18,3W Con Ra = 138º; v = 10dm = 4º NW (-); = -1Rc = N40E; Ih = 2 con viento NE; ab = 2º Se pide situación en HRB = 10:20 1º)- Hacemos una estima directa con nuestro rumbo de superficie (Rs), es decir; afectado por el abatimiento: R superficie = Rv + ab Rv = Ra + ct Ct = dm + dm = 4(-) = 1 (-) Ct = 5 (-) Rv = 138º + 5º(-) = 133º 138º + ct CLIC Después calculamos el rumbo de superficie corrigiendo el rumbo verdadero por abatimiento. Como se ve en el dibujo, el barco abate a estribor, por tanto el abatimiento tiene signo +, por tanto sumamos ese abatimiento al Rumbo verdadero. CLIC Rs = 133º + 2 (+) = 135º El abatimiento es hacia estribor, por tanto tiene signo + CLIC Hallamos la distancia recorrida. Nuestra velocidad es de 10 y el tiempo de navegación es el intervalo que hay entre HRB = 07:30 y HRB = 10:20. que son, expresados en horas y décimas de hora, 2,83h. Podría expresarlo en minutos y segundos pero luego, a la hora de operar, es más fácil de esta manera. CLIC v · t = 10 · 2,83 = 28,3 Distancia recorrida = v · t t = 10:20 – 07:30 = 283h v = 10 CLIC Por último hallamos el Apartamiento y la diferencia de latitud. El Δl tiene signo menos, lo que quiere decir que es SUR. Aunque basta con ver el rumbo: 135º = S45E CLIC A = 283 · sen 135 = 20,01 E l = 283 · cos 135 = -20,01 = 20,01 S CLIC Indice

15 2º)- Hacemos la estima de la corriente, es decir; la distancia y la dirección hacia donde nos lleva la corriente durante el periodo que estamos afectados por ella (2,83h). Ahora hacemos la estima de la corriente CLIC Rc = 40º;V = 2Dist. = v · t = 2 · 2,83h = 5,66 A = 5,66 · sen 40º = 3,63E Δl = 5,66 · cos 40º = 4,33 N CLIC Sumamos los Apartamientos y los Δl de ambas estimas CLIC 3º)- Sumamos los A y l de nuestro rumbo y velocidad a los del Rc e Ih: CLIC Con este Δl final calculamos la latitud media para poder hallar el ΔL final CLIC 4º)- Calculamos lm para poder hallar L CLIC Siendo la Longitud de llegada… CLIC Indice

16 Por último hallamos la distancia… Chup….Chup … …Pues menos mal…. ¡Ya se acaba este rollo! 5º)- La distancia sólo la podemos resolver por el teorema de Pitágoras: A Δ l R D Sustituyendo valores: Oiga, capitán, ¿por qué, en este problema, sólo se puede calcular la distancia por el teorema de Pitágoras? ¿Por qué no podemos usar la fórmula JUA, JUA,… JA…. JA, JA, JOOOO…JO, JO!!!!! CLIC ¡Que me troncho de risa! ¡Pues vaya profesor que está Vd. hecho! CLIC Mira… CLIC Vamos a ver porque esto es la 3ª vez que te lo explico… Por la fórmula del coseno no podemos hallar la distancia recorrida ya que el l es resultado de sumar dos l provenientes de dos distancias navegadas a dos rumbos; el del barco y el de la corriente, mientras que el rumbo que se utiliza en la fórmula del coseno es el rumbo efectivo de corriente. Si conociesemos el rumbo efectivo de corriente, es decir; si lo hubiéramos calculado previamente, entonces sí que podríamos calcular la distancia con la fórmula del coseno de R. Ejemplo Si navegásemos con un rumbo de 00º durante 1hora con una velocidad de 10, el Δl sería de 10, y el L sería 0. Sin embargo, si navegásemos ese tiempo a esa velocidad y con ese rumbo, pero afectados de una corriente ESTE con Ih = 10, el l sería el mismo, 10, pero el L ya no sería 0 sino 10, y la distancia navegada sería mayor. Para resolver la distancia por el teorema del coseno, hay que partir del rumbo resultante resultado de la combinación de nuestro rumbo y velocidad con el de la corriente y su intensidad horaria, es decir: rumbo efectivo CLIC R = 00º V = 10 Tiempo navegado = 1h Distancia recorrida = 10 Δ latitud = 10 N R efectivo = 00º Situación de salida N Situación de llegada Si añadimos una corriente con Rc = ESTE, el Δl sigue siendo 10 N pero la distancia navegada es mayor porque hay un Apartamiento de 10 E ΔlΔl Apartamiento R efectivo = 00º Situación de salida Situación de llegada Rc Ihc CLIC Indice

17 Pero hay otras formas de averiguar sobre la derrota trazada en la carta cual va a ser: … nuestra situación al cabo de un tiempo navegado en el seno de una corriente conocida, es decir; el rumbo efectivo de corriente y nuestra velocidad efectiva de corriente también. … o qué rumbo e intensidad horaria tiene una corriente desconocida después de haber navegado desde A hasta B siendo A y B lugares reconocidos y situados en la carta, es decir; conocidos los rumbos verdadero y efectivo de corriente, y las velocidades de máquinas y efectiva de corriente hallar el rumbo y velocidad de la corriente. … o, navegando en el seno de una corriente conocida, qué rumbo verdadero y qué velocidad de máquinas hemos de considerar para llegar de A a B en un tiempo concreto. Vamos a ver ejemplos de todo esto. CLIC Indice

18 Primer caso: HALLAR CUAL SERÁ NUESTRO RUMBO Y VELOCIDAD EFECTIVOS CONOCIDOS NUESTRO RUMBO VERDADERO Y VELOCIDAD Y EL RUMBO DE LA CORRIENTE (Rc) Y SU INTENSIDAD HORARIA (Ih). CLIC Rc Ih Rv, Vmáquinas El barco lleva un rumbo verdadero (el que sea) y una velocidad de máquinas de 10,5 nudos CLIC La corriente tiene un Rumbo (el que sea) y una intensidad horaria de 4 nudos CLIC El rumbo efectivo de corriente y la velocidad efectiva de corriente es la resultante de la suma vectorial de los dos vectores del Rv y V máquinas y Rc Ih. La velocidad se mide con la escala que estamos utilizando para medir nuestra velocidad y la velocidad de la corriente. Como vemos, la velocidad efectiva es 13 nudos (1 nudo = línea roja + línea azul). El rumbo lo hallamos con el transportador de ángulos. CLIC R efectivo y V efectiva CLIC ¿Y esto es lo que tenemos que hacer sobre la carta cuando queramos averiguar nuestro Rumbo y velocidad efectivos…? … No necesariamente. Normalmente se simplifica este procedimiento CLIC ¿Cómo se hace entonces? Indice

19 Ya hemos visto que para hacer este dibujo hay que trazar el Rc (Rumbo de corriente) y laIhc (Intensidad horaria de la corriente); el Rv (Rumbo verdadero del barco) y la Vm (velocidad de máquinas); después hay que trazar las paralelas a Rc Ihc y Rv Vm y, por último, hay que trazar una recta desde el origen del paralelogramo creado hasta la intersección de las dos paralelas que hemos trazado anteriormente. Esta recta será el rumbo efectivo y la velocidad efectiva del buque. Pero este procedimiento se puede simplificar, con lo que se ahorra tiempo y al hacer menos rectas hay menos posibilidad de cometer errores. La forma de proceder es la siguiente: 1º)- Trazamos el Rumbo e intensidad horaria de la corriente R efectivo y V efectiva Rv, Vmáquinas Rc Ih Rv, Vmáquinas R efectivo y V efectiva CLIC 2º)- Desde el extremo del vector Rc Ihc trazamos nuestro Rv y velocidad de máquinas CLIC 3º)- Unimos con una recta el origen de Rc Ihc con el extremo de Rv Vmáquinas. Ese es el Rumbo efectivo de corriente y la velocidad efectiva CLIC Indice

20 2º caso: RUMBO E INTENSIDAD HORARIA QUE TIENE UNA CORRIENTE DESCONOCIDA después de haber navegado desde A hasta B siendo A y B lugares reconocidos y situados en la carta, es decir; conocidos los rumbos verdadero del buque y la velocidad de máquinas, y el Rumbo efectivo y la velocidad efectiva, hallar el rumbo y velocidad de la corriente CLIC 1º)- Trazamos nuestro Rv y V máquinas Rv, Vmáquinas R efectivo y V efectiva Rv, Vmáquinas Rc Ih CLIC 2)- Trazamos el Refectivo de corriente y la velocidad efectiva R efectivo y V efectiva CLIC 3º)-Unimos ambos vectores y obtendremos el Rc Ihc Siempre en dirección del Rumbo y velocidad efectivo CLIC Rc Ih CLIC A B Indice

21 RUMBO VERDADERO Y VELOCIDAD DE MÁQUINAS QUE HEMOS DE LLEVAR PARA LLEGAR DE A A B EN UN TIEMPO CONCRETO NAVEGANDO EN EL SENO DE UNA CORRIENTE CONOCIDA, Queremos llegar de A a B en 2,5 horas y la distancia que separa ambos lugares es de 40 millas. 1º)- Navegar 40 millas en 2,5 horas implica llevar una velocidad efectiva de 16. Esa es la velocidad efectiva de corriente porque ha de ser la velocidad final, resultante de la combinación de la corriente con nuestro rumbo y velocidad propios. Además, ese trayecto de A hasta B, ha de ser el rumbo efectivo de corriente, es decir; el rumbo que, sobre el fondo, ha de llevar el barco. MARCAMOS SOBRE ESE RUMBO EFECTIVO DE CORRIENTE LA VELOCIDAD EFECTIVA que, en 2 horas, nos llevará de A hasta b, es decir: 16. CLIC B Rumbo Efectivo y distancia A CLIC 2º)- Desde A marcamos el Rumbo de la corriente y su intensidad horaria (Rc Ihc) Supongamos que es 045º y 6 respectivamente. CLIC Rc Ihc CLIC 3º)- Uno ambos segmentos y obtengo el Rumbo verdadero y la velocidad de máquinas. CLIC Rv y V máquinas Velocidad efectiva CLIC …Y con esto queda explicado el tema de la navegación con corriente… Le felicito marinero… CLIC Indice

22 Estimas Inversas CLIC Indice

23 ¿Le felicito marinero?... ¿Ya queda explicada la navegación con corriente? ¿pero qué dice ese botarate?... ¿qué pasa con la estima inversa? ¿qué pasa con la estima inversa con abatimientos y corrientes?... ¿qué pasa con las latitudes aumentadas?... …Pe… pero… pe… yo… usted disculpe… ¿Ein? Vienen a que se dejan más de la mitad de la ciencia de la navegación loxodrómica ¡Pero falta lo más importante!!! ¡Uy, qué hoooorror! ¡Qué hooombre! ¡Oig! ¡¡No me callaré!! ¡ Que me oiga todo el mundo! Ese capitán es un percebe! Se deja CASI TODO!!! Si el capitán considera que ya está todo explicado… es que lo está… ¡Haga el favor de no intimidar a la tripulación! ¡¡Silencio!! Si no se calla ahora mismo mandaré que lo arresten!!! ¿Qué ocurre aquí? ¿A qué vienen esos gritos? ¡JA! No pienso callarme! ¡Vuestro capitán es un botarate!!! ¡Arresten a este barbudo desagradecido! CLIC Indice

24 CLIC …¡Porque es un crustaceo que no tiene ni idea! ¡JA; JA; JA…! CLIC Indice Es Vd. Un grosero impresentable… ¡Al calabozo! Pues eso se lo vas a decir al capitán!! ¿Y por qué, si puede saberse? …¡Qué atropello!...¡Qué ignominia! ¡Conculcada libertad de expresión…! …Creo que ya se por qué tu capitán ha dado por concluída la explicación de la navegación loxodrómica sin explicar conceptos tan importantes como el de la estima inversa, la situación con abatimientos, corrientes y demoras, y las latitudes aumentadas…

25 Parece ser que Vd. Se dedica a pregonar el bajo concepto que tiene de mí, a pesar de no conocerme en absoluto… Náuticamente hablando Vd., capitán, parece olvidar conceptos básicos de la navegación… CLIC Esto es un crucero de recreo, no un buque escuela… de todos modos tanto los pasajeros como la tripulación y yo mismo estaremos encantados con que nos deslumbre con la antorcha de su conocimiento de la ciencia náutica, señor náufrago CLIC Pues no lo dude… Escuche y aprenda CLIC Indice

26 Hasta ahora hemos visto como calcular la diferencia de latitud y longitud al cabo de una navegación de estima, es decir; después de navegar a un rumbo conocido durante un tiempo determinado a una velocidad determinada. También hemos visto como nos afectan el abatimiento y la corriente, y como calcular nuestro rumbo verdadero y velocidad de máquinas para llegar de A hasta B en un tiempo determinado. Pero esto lo hemos hecho trazando estos rumbos, verdaderos o efectivos de corriente y/o abatimiento, sobre la carta… pero ¿qué ocurriría si, aún conociendo las coordenadas de esos dos puntos, la distancia entre ellos fuese más grande que el área incluida en la carta…es decir; si no pudiesemos trazar una recta entre esos dos puntos para medir el rumbo verdadero?... ¿Ein? CLIC A B Al no poder trazar una recta no podríamos medir ningún rumbo CLIC Indice

27 … Lo que hay que hacer en estos casos es calcular el rumbo a partir de las coordenadas geográficas de los puntos de salida y llegada… es lo que se conoce en náutica como LA ESTIMA INVERSA o ESTIMA INDIRECTA Antes calculábamos las coordenadas de la situación de llegada sumándo las diferencias de latitud y longitud a la situación de salida, calculados estas a partir de un rumbo y una distancia conocidos, y ahora se trata de calcular el rumbo y la distancia a partir de las coordenadas geográficas conocidas de ambos puntos. ESTIMA INDIRECTA En este tipo de problemas conocemos las coordenadas geográficas de salida y llegada, pero no conocemos ni el rumbo ni la distancia. Lo que obtendremos será un rumbo verdadero corregido por abatimiento y corriente, es decir: si existiera abatimiento por el viento, sería un rumbo de superficie, y si existiera corriente sería un rumbo efectivo de corriente. l = l – l : Arco de meridiano desde donde salgo hasta donde voy. L = L – L : Nunca > 180º. Si es mayor se le resta de 360 y se le cambia el signo. No podemos, por ejemplo, variar nuestra Longitud 359º hacia el W, aunque hayamos navegado con rumbo W todo ese arco de Longitud. En este ejemplo, la variación de Longitud sería: 360º – 359º = 1º E. Este tipo de problemas también se resuelve con un triángulo rectángulo. Podemos conocer directamente uno de los lados del triángulo; el l = l – l, que es la diferencia entre las latitudes de llegada y salida. El otro lado, el apartamiento, lo conocemos a partir de la fórmula de L de la estima directa: Deducimos que: Siendo Como la función que relaciona los catetos contiguos de un triángulo rectángulo es la tangente: Tenemos que Con lo que ya podemos conocer el Rumbo. A Δ l R D A lm ΔLΔL y ΔL = L – L A Δ l R D l = l – l CLIC Indice

28 Conocido el Rumbo, falta por conocer la distancia que separa los dos puntos. La distancia la resolvemos con el teorema de Pitágoras: Sustituyendo valores: La distancia también se puede hallar con la fórmula del coseno, que relaciona el cateto contiguo (Δl) y la hipotenusa del triángulo (distancia) Pero esta fórmula sólo se puede aplicar en el caso de que el Rumbo sea un rumbo corregido por abatimientos y corrientes, es decir; que sea un Rumbo efectivo. Más adelante, con un ejemplo, veremos por qué.: Deducimos que: A Δ l R D Pero esta fórmula sólo se puede aplicar en el caso de que el Rumbo sea un rumbo corregido por abatimientos y corrientes, es decir; que sea un Rumbo efectivo. Más adelante, con un ejemplo, veremos por qué. CLIC Indice

29 ¿Qué esto es complicado?... ¡Que va! ¡Ni mucho menos! Vamos a ver un ejemplo: Como tenemos que aplicar Hallamos lm Lo que supone un l Sur lm = l- = 39º-27N - El ΔL = Hallamos el Apartamiento A = 60 · cos 38,97 = 46,65 N Hallado el Apartamiento, podemos aplicar la fórmula del Rumbo …Y ya está… A lm ΔLΔL EJEMPLO DE ESTIMA INVERSA, O INDIRECTA Situación de salida: l = 39º-27N L = 130º-16W Hallar rumbo y distancia. Situación de llegada: l = 38º-30N L = 131º-15W A Δ l R D CLIC Indice

30 El cálculo de la distancia que separa los dos puntos no es más complicado… Y la distancia: También podemos conocer D por el teorema de Pitágoras: A Δ l R D También podemos hallar la distancia conAunque la diferencia es mínima, es mejor hallar la distancia con A mi modesto entender, el mejor método es por el teorema de Pitágoras CLIC Indice


Descargar ppt "El compás Rumbo cuadrantal y circular Rumbo Demora Marcación Utilidad de las demoras Utilidad de las marcaciones Método para hallar la demora de un objeto."

Presentaciones similares


Anuncios Google