La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Funciones: Transmitir la potencia a las ruedas Cambiar el torque y velocidad del motor en el torque y la velocidad requerida por las ruedas en cada.

Presentaciones similares


Presentación del tema: "Funciones: Transmitir la potencia a las ruedas Cambiar el torque y velocidad del motor en el torque y la velocidad requerida por las ruedas en cada."— Transcripción de la presentación:

1

2

3

4

5 Funciones: Transmitir la potencia a las ruedas Cambiar el torque y velocidad del motor en el torque y la velocidad requerida por las ruedas en cada trabajo.

6 Se cumple que: T E. N E. = T W. N W Constante T E: Torque en el motor N E : Velocidad en el motor (rpm) T w : Torque en la rueda N w : Velocidad en la rueda (rpm) : Eficiencia de transmisión Conceptos Básicos: La potencia del motor a una determinada velocidad de régimen de giro del motor es siempre la misma Debe haber un medio de cambiar la relación de giro entre el motor y las ruedas para cumplir los diferentes requerimientos de trabajo del tractor. V (rpm) BHP Torque BHP Combustible (1)

7 MOTOR TRANSMISION EJE BARRA DE TIRO TDFTDF 0.75 – – – – – – – – 0.89 Pérdidas de potencia en las transmisiones Por cada par de engranajes se pierde entre 3 y 4 % de potencia. P TDF = (0.87 – 0.90). PMP BT = (0.75 – 0.81). PM

8 Como se cumple le relación 1. se tienen las siguientes curvas de tiro – velocidad de avance del tractor.

9 La complejidad de la transmisión de potencia se ha ido incrementando con el tiempo. 1941:4 velocidades 1962:8 velocidades 2004:16 – velocidades adelante y atraz. Las transmisiones variables se pueden clasificar en: 1.Cambios selectivos, radio fijo (convencional) 2.Cambios selectivos, radio fijo mas un planetario 3.Planetarios en serie 4.Hidrodinámica (hidrocinética) mas cambios selectivos 5.Hidrostática 6.Mecánica de variación infinita. Automáticas, cambios hidráulicos o manuales Se puede equipar para que la transmisión se pueda bloquear para condiciones de carga estable En pequeños tractores de jardín y en combinadas en sistemas de correa en V

10 La diferencia entre la transmisión de un tractor y un automóvil es: En el tractor a cualquier cambio se puede trabajar continuamente bajo muchos rangos de carga En un automóvil la transmisión puede fallar si trabaja en cambios bajos a toda potencia por tiempos prolongados.

11 Diseño de los dientes de los piñones Los engranajes fallan por flexión o por su uso. Por eso se han desarrollado ecuaciones para su cálculo según estos dos criterios. Esfuerzo de superficie: Es el factor que mas afecta la duración por uso, esta gobernado por las propiedades del material. Ecuación de Buckingham para la carga límite de desgaste en un engrane recto: Fw: Carga equivalente, sobre la cual se espera un desgaste rápido. (lb) Dp: Diámetro de paso del menor piñón o engrane. (in) b: Ancho de la cara del engrane. (in) : Límite de endurecimiento de la superficie del material. Ep: Modulo de elasticidad del material del piñón Eg: Módulo de elasticidad del material del engrane n: Número de dientes en el piñón N: Número de dientes en el engrane. Para algunos aceros de engranes

12 Ecuación de Barth. Esfuerzo de trabajo seguro en función de velocidad del diámetro de paso de los engranes y de su exactitud. c : Esfuerzo seguro de trabajo del material : Esfuerzo estático seguro del material A: Factor que depende de la seguridad de los engranajes V: Velocidad del diámetro de paso Con A = 2000 y = , La mayoría de los engranajes de los tractores fallan en el 10% del valor de = El límite de velocidad del diámetro de paso para los engranajes es de m/seg aprox.

13 El esfuerzo por flexión no es un limitante en los engranajes, pero este factor debe ser chequeado. Se tiene la fórmula de Lewis. Fs: Resistencia del diente (lb) : Esfuerzo de trabajo seguro del material, psi p: Paso circular, in b: ancho de la cara del engrane, in y: factor de forma del diente. Cálculo de y: De la figura, y=2x/3p, considerando el engrane como una barra fija a un lado y cargada al otro.

14 No. dientesy y y cremallera Valores de y para la ley de Lewis con dientes a 20°

15 El esfuerzo para tractores de oruga es menor que para los de rueda, por lo cual una oruga puede transmitir más del 50% de la potencia del motor según los fabricantes.

16 Transmisión de Carga Para el diseño y selección de transmisiones en tractores se debe conocer la experiencia de uso de varios cambios para varios porcentajes de máxima potencia en el PTO y el la barra de tiro. Para el TDF del tractor y de las máquinas se debe conocer la magnitud de la carga torsional impuesta debido a las altas inercias de las partes del tractor o del implemento. VelocidadRango mph % de Carga de máxima operaciónHoras totales Baja1.5 – Despacio3.0 – Media5.0 – Alta10 – Reversa0.5 – Potencia en Correa Horas Motor PTO Datos para diseño de transmisiones de tractores

17 NECESIDAD DE LA CAJA DE CAMBIOS Potencia: Trabajo realizado en la unidad de tiempo: P = potencia. W = Trabajo. t = Tiempo. Producto escalar: Fuerza. Distancia Si están en la misma dirección Como d/t = v La expresión anterior sólo es válida si la dirección de la fuerza y de la velocidad son coincidentes.

18 Si no hubiera medio de variar la relación de giro entre el motor y las ruedas, el tractor marcharía siempre a la misma velocidad debido a la relación constante de los engranajes en la transmisión. El trabajo no siempre es el mismo, porque, por ejemplo, arar cuesta arriba requiere mayor esfuerzo que en llano, de modo que si el tractor está adecuado para esto último, le faltará potencia en las partes empinadas, y entonces se recurre a que vaya más despacio para que el producto no sobrepase el máximo valor de N permitido por el motor. No todas las labores requieren la misma velocidad. y el transporte por carretera, se hace a unos 30 Km/h. V (rpm) BHP Torque BHP Consumo específico En los tractores agrícolas la potencia del motor a una determinada velocidad de régimen de giro del motor es siempre la misma. Por lo tanto, Si se aumenta la velocidad de avance V del tractor, disminuye su fuerza F, pues el valor de la potencia requerida al motor sobrepasará a la de su capacidad al determinado régimen de giro

19 - Eje primario: unido al embrague transmite el giro del motor y termina en un piñón fijo, engranado constantemente con otro que mueve el denominado eje intermediario o contraeje. - Eje intermediario en el que hay varios engranajes fijos a él con distintos tamaños que independientemente transmiten a otros situados en el eje secundario. -Eje secundario, en prolongación pero separado del eje primario estriado con ranuras a lo largo en las que pueden deslizarse engranajes desplazables que giran solidarios con el árbol secundario y que el usuario puede mover adelante y atrás con la palanca de mando del cambio. Dichos engranajes forman parejas de transmisión con los del eje intermediario. Estas necesidades se satisfacen con el cambio de velocidades.

20 El engranaje del eje primario es más pequeño que el del intermediario que conecta con él de modo que el intermediario gira más despacio que el motor. Si el tractorista hace engranar el engranaje de mayor diámetro del eje secundario con el menor del eje intermediario el giro se transmite al eje secundario de nuevo reducido. Como es la combinación que da la velocidad de giro del secundario más baja, se le llama primera velocidad. A la relación entre el radio del engranaje del intermediario y el del secundario se le llama relación de transmisión.

21 Si la pareja de engranajes que se conectan es la de siguiente tamaño del secundario y del intermediario accionando la palanca del cambio, produciendo el previo desengrane de la anterior pareja el giro del motor llega al secundario menos rebajado, menos demultiplicado, ésta sería la segunda velocidad..

22 Combinando adecuadamente las parejas de engranajes correspondientes del eje intermediario y del secundario se obtienen las diferentes velocidades hacia delante de la caja de cambios

23 Para moverse el tractor hacia atrás, se mueve el desplazable correspondiente del eje secundario a engranar con un engranaje intermedio, que invierte el giro del correspondiente del eje intermediario, y así el eje secundario girará en sentido contrario al normal y las ruedas también, con lo que el tractor se desplazará marcha atrás

24 Hay una posición de los engranajes en la que ninguno conecta con otro, es decir, que no se transmite movimiento porque el eje intermediario gira en vacío, sin que ningún engranaje desplazable del eje secundario engrane con su correspondiente del eje intermediario. Esta posición se llama punto muerto. Cada vez que se desengrana o engrana una pareja de piñones del cambio, es necesario desconectar el giro del motor, y para ello se desembraga previamente, volviendo a embragar con suavidad progresiva después de actuar sobre la palanca del cambio. Se desprende que la misión de la caja de cambios es, de acuerdo con la fuerza que exige la realización de una labor determinada, adaptar la velocidad de avance del tractor de manera que el aprovechamiento de la potencia del motor sea máximo. Es evidente que una velocidad larga desarrollará menos fuerza que una velocidad corta, y viceversa. Esto explica claramente que los tractores agrícolas actuales dispongan de una caja de cambios con una gama amplia de velocidades, con el fin de poder adaptarse a las exigencias de las muy diferentes labores que deben realizar en la explotación agrícola.

25 4.- Trompeta 2.- Hidráulico 3.- Diferencial 1.- Eje secundario

26 La necesidad de los tractores agrícolas de disponer de un elevado número de velocidades les obliga a disponer de un grupo reductor o multiplicador colocado antes de la caja de cambios. El grupo reductor es accionado mediante una palanca llamada palanca reductora, que oscilando sobre una rótula mueve varios engranajes desplazables que engranan en sus correspondientes engranajes de diferente tamaño montados sobre el eje de salida del grupo reductor. Cada engranaje desplazable se desliza sobre un eje estriado que recibe el movimiento del disco de embrague. Accionada por el eje de salida del grupo reductor hay una caja de cambios que, como se ha expuesto, en esencia consta de tres ejes denominados: primario, intermediario y secundario. El eje primario recibe el movimiento del grupo reductor y tiene dos piñones en toma constante, uno engranando con el grupo reductor y el otro engranando constantemente con un engranaje del eje intermediario. COMPONENTES BÁSICOS y FUNCIONAMIENTO DE LA CAJA DE CAMBIOS

27

28 1.- Embrague 2.- Reductora 3.- Caja de cambios EMBRAGUE-CAJA DE CAMBIOS

29 1.- Embrague 2.- Reducción primario-intermediario 3.- Reductora 4.- Caja de cambios 5.- Diferencial 6.- Reducción final 7.- Toma de fuerza

30 El eje intermediario lleva varios engranajes de diferentes tamaños solidarios a él, uno en toma constante con otro del eje primario que es por donde recibe el movimiento, otro engranado con un pequeño engranaje inversor de sentido de giro para conseguir la marcha atrás, y otros que engranan alternativamente, según se desee, con los correspondientes del eje secundario para conseguir las diferentes velocidades que ofrece la caja de cambios. Sobre el eje secundario van colocados engranajes desplazables, independientes unos de otros, que pueden deslizarse sobre el estriado de este eje. Cada desplazable va unido a un collarín, en la garganta del cual se aloja una horquilla que se acciona por medio de la palanca de cambio mediante unas barras. Hay que indicar que al ser los desplazables interiormente estriados y el eje secundario también, los piñones pueden deslizarse longitudinalmente sobre él pero, si giran engranados con su correspondiente engranaje del eje intermediario que les da movimiento, transmiten su movimiento al eje secundario que girará a su misma velocidad y transmitirá su par motor correspondiente.

31 El funcionamiento del grupo reductor es en esencia como sigue: La palanca reductora tiene dos, tres y hasta cuatro posiciones: velocidades largas, medias, cortas y punto muerto. Poniendo la palanca en la posición de velocidades largas el engranaje más grande del desplazable engrana con el correspondiente que es el más pequeño del eje conducido, con lo cual se consigue un mayor régimen de revoluciones en el eje de salida del grupo reductor. Poniendo la palanca en la posición de punto muerto no hay conexión entre los engranajes del desplazable y los del eje conducido, por lo que no hay transmisión de movimiento. Colocando la palanca en la posición de velocidades medias o cortas los engranajes más pequeños del eje motor engrana con los más grandes del eje conducido según correspondan, con lo cual se obtienen regímenes de revoluciones medios o cortos, del eje de salida del grupo reductor. De esta forma se consiguen a la entrada de la caja de cambios dos velocidades diferentes de giro en el eje primario, lo cual multiplica por dos el número de combinaciones de marchas de la caja de cambios.

32

33 1.- Embrague 2.- Eje primario 3.- Eje intermediario 4.- Eje secundario

34 Si, por ejemplo, en la caja de cambios la palanca de cambio puede ocupar cinco posiciones: punto muerto, primera velocidad, segunda velocidad, tercera velocidad y marcha atrás. En la posición de punto muerto no se encuentra engranado ningún piñón del eje secundario con ninguno del eje intermediario, por lo que no hay transmisión de movimiento. Al colocar la palanca de cambio en la posición de primera velocidad el engranaje desplazable se desliza hacia la izquierda engranando su engranaje con el correspondiente del intermediario. Al ser este pequeño y el conducido grande, la velocidad de giro del eje secundario será pequeña. Para pasar a segunda velocidad habrá que pasar la palanca de cambio de la posición de primera a punto muerto, con lo cual el engranaje desplazable de primera velocidad queda desconectado del intermediario. A continuación la palanca pasa a la barra correspondiente al desplazable correspondiente que engrana con el correspondiente del eje intermediario con lo que se obtiene una velocidad de giro en el eje secundario mayor que la alcanzada en la primera velocidad.

35 Para pasar a la tercera velocidad la palanca pasará primero por el punto muerto desengranando los piñones de la segunda velocidad, y después pasará a la posición de tercera velocidad, con lo que el engranaje correspondiente se desplazará al correspondiente del eje primario. Para poner la marcha atrás pasando por el punto muerto, se desplaza la palanca hacia la posición de marcha atrás con lo cual el engranaje desplazable correspondiente engrana con el de marcha atrás, el cual a su vez está engranado constantemente con el correspondiente del intermediario. El engranaje inversor está situado entre el eje intermediario y el secundario, lo cual provoca un cambio del sentido de giro del secundario, haciendo que el tractor se desplace en sentido contrario que en las demás velocidades.

36

37

38

39

40

41

42

43 Para evitar que con las vibraciones y los movimientos bruscos que sufre el tractor en las labores agrícolas, los engranajes desplazables del secundario puedan cambiar de posición por sí solos, las barras que mueven a las horquillas llevan unas muescas esféricas en las que se aloja un fijador consistente en una bola presionada por un muelle. Al cambiar de velocidad la fuerza que se ejerce sobre la palanca de cambio se transmite a la bola, la cual al remontar la muesca esférica presiona al muelle hacia el lado contrario de donde está la muesca, permitiendo así el desplazamiento de las barras. Además de éstos, existe un fijador de seguridad consistente en un pequeño bulón situado entre ambas barras que, al estar desplazada una de ellas en la posición de velocidad, bloquea a la barra opuesta en la posición de punto muerto, impidiendo de esta forma que puedan ponerse dos velocidades a la vez, lo que provocaría el bloqueo o la rotura de la caja ª 1ª 4ª 3ª 4

44 Los engranajes de la caja de cambios anterior son cilíndrico de dientes rectos. Esto ocasiona ruidos de funcionamiento y dificultad al cambiar de marcha. En la caja de cambios con engranajes en toma constante los engranajes del eje secundario y del intermediario permanecen conectados constantemente. Los engranajes del secundario no van unidos al eje mediante estrías, pudiendo girar libremente sobre dicho eje. Además, estos engranajes llevan adosado a uno de los lados un piñón más pequeño, que se denomina piñón lateral. Entre cada dos engranajes del eje secundario va colocado un desplazable que en su parte central lleva un orificio estriado que puede deslizar por el estriado correspondiente que en esta zona lleva el eje secundario. En ambos lados de los desplazables van talladas interiormente dos coronas dentadas acoplables a sus correspondientes piñones laterales. En la posición de punto muerto el desplazable se encuentra situado entre los piñones, sin engranar con ninguno de ellos. Aunque el eje intermediario esté girando y los piñones del secundario en toma constante también giren, no hay transmisión de movimiento, pues éste no llega al eje secundario al girar libremente sobre él los engranajes de transmisión de movimiento desde el eje intermediario ' 5' CAJA DE CAMBIOS CON ENGRANAJES EN TOMA CONSTANTE

45 Para conectar una velocidad se desliza el desplazable a uno de los lados, con lo que la corona interior de éste engrana con el piñón lateral del engranaje, pasando el movimiento al eje secundario a través del propio desplazable. En esta caja de cambios con cada desplazable se pueden conseguir dos velocidades, girando el eje secundario con una velocidad de giro determinada por la relación entre los engranajes correspondientes del eje intermediario y del secundario. Para reducir ruidos en la transmisión los engranajes se construyen del tipo cilíndrico con dientes helicoidales.

46

47 En las cajas de cambios anteriores, al intentar conectar engranajes que no giran a su misma velocidad, hay dificultad para hacer coincidir los dientes del primero con los huecos del segundo, lo que se traduce en un fuerte golpeteo de uno contra otro, desgastes, roturas y dificultad de cambio de marcha. Esto desaparece cuando los dos engranajes o los dos piñones están quietos o cuando giran a la misma velocidad. Hasta la aparición de las cajas de cambios sincronizadas para poder realizar cambios de velocidad era preciso detener el tractor o, con gran destreza, aprovechar el momento en que los dientes se mueven a la misma velocidad. CAJA DE CAMBIOS SINCRONIZADA

48 En la práctica se hace el doble embrague. Esto consiste en pisar el embrague, poner punto muerto, soltar el embrague, acelerar el motor, volver a pisar el embrague y poner la velocidad elegida. La explicación es la siguiente: el secundario gira a más velocidad que el intermediario, acelerando en punto muerto aumenta el régimen de giro del intermediario y no del secundario. Una aceleración, por exceso o por defecto, en el doble embrague, traerá como consecuencia no igualar el movimiento de los dientes y, por tanto, el rozamiento de piñones, es por ello que se precisa de destreza y práctica para hacerlo.

49 Los constructores de automóviles solucionaron este problema hace algunos años, mediante el cambio sincronizado que actualmente se usa también en los tractores por la gran ventaja que supone el poder cambiar de velocidad sin detener la marcha del tractor. El cambio sincronizado es un cambio de marchas con engranajes en toma constante en el que los piñones laterales llevan adosada una pieza en forma de tronco de cono llamada cono de sincronización. Entre los engranajes hay un núcleo solidario con el eje secundario. Unidos al núcleo van dos piñones llamados piñones de sincronismo, desplazables cuyo interior tiene una cavidad de forma cónica. Sobre el núcleo se sitúa un desplazable cilíndrico con estrías interiores coincidentes con el dentado del núcleo, y que, por la parte exterior, lleva una garganta en la que se aloja la horquilla del cambio de velocidad. El piñón lateral, el piñón de sincronismo y la corona son del mismo diámetro y tienen iguales sus dientes. El desplazable cilíndrico desplaza también al piñón de sincronismo hasta un cierto punto en el que entran en contacto cono y contracono.

50 Al tomar contacto la fricción entre ellos hace que alcancen una misma velocidad de giro. A este proceso se le denomina fase de sincronización. Al seguir deslizándose el desplazable y haber equivelocidad de giro, engranará con toda facilidad con el piñón lateral ya que ambos giran a la misma velocidad después de la fase de sincronizado. A este proceso se le denomina fase de transmisión. Al quitar el pie del pedal del embrague el movimiento se transmite del eje intermediario al piñón del secundario, de éste al piñón lateral y, por medio del desplazable, al núcleo y eje secundario. Aunque la caja de cambios sea sincronizada es conveniente, al reducir de velocidad, hacer el doble embrague pues con ello se alarga considerablemente la duración de los mecanismos de sincronización.

51

52

53 El cambio de marchas de los tractores sirve para transformar la velocidad de giro del motor en un número determinado de velocidades de las ruedas motrices a la vez que se modifica su par motor. Su necesidad es consecuencia de la relativa falta de elasticidad de los motores de combustión interna, que no pueden emplearse correctamente más que entre límites de velocidad bastante estrechos. Bloques de marchas: Permite ampliar el número de marchas sin alargar excesivamente la transmisión. Así por ejemplo, para 24 marchas sólo son necesarios 2 bloques, uno con 6 marchas (1ª, 2ª, 3ª, 4ª, 5ª y 6ª) y otro con 4 (L, lenta,; M, media; H, alta y R retroceso), con lo que en vez de 24 pares de engranajes sólo se necesitan 10 pares. CAMBIOS REALES DE LOS TRACTORES AGRÍCOLAS

54 Uno de los casos más sencillos de un cambio de marchas de engranajes es el de algunos motocultores. Está compuesto de sólo dos ejes, uno primario de entrada y otro secundario de salida. El eje primario es accionado desde el motor y lleva tres engranajes desplazables a lo largo del que conectan independientemente con otros tres del eje secundario. Para cada régimen de giro n r.p.m. del motor se obtienen tres regímenes distintos del eje secundario: n 1, n 2 y n 3. Las relaciones de transmisión respectivas son: Actualmente los tractores no llevan una única palanca de mando para el cambio de velocidades, sino dos o más, para manejar el bloque reductor y la caja de cambios.

55 Los tractores modernos llevan acoplado en la caja de cambios el denominado inversor y el superreductor. El inversor hace posible invertir el sentido de desplazamiento sin mas que actuar sobre una palanca que invierte el sentido de rotación de todos los engranajes. El mecanismo inversor usa un tren de engranajes planetarios y es particularmente útil en los trabajos con cargador frontal, horquillas, niveladoras y para maniobrar en espacios restringidos. El superreductor permite obtener velocidades sumamente bajas, necesarias en trabajos como excavación, despedregado y plantación. Este mecanismo está situado delante de la caja de cambios y utiliza pares de engranajes cilíndricos con grandes reducciones de demultiplicación.

56 El escalonamiento lógico de las relaciones de demultiplicación de las cajas de cambios se puede demostrar que es aquel en el que dichas relaciones están en progresión geométrica, pues así se consigue el máximo aprovechamiento de la elasticidad del motor del tractor. Si la curva de par del motor del tractor es la que se presenta en la figura, se sabe que el régimen del motor al realizar una determinada labor debe variar desde a para trabajar en la denominada zona flexible. ESCALONAMIENTO DE LAS RELACIONES DE MARCHA

57 Si en unos ejes cartesianos se presentan en abscisas el máximo régimen de giro del secundario necesario para que el tractor circule a la velocidad punta deseada y en ordenadas y correspondientes a la zona flexible del motor del tractor. Una caja de cambios de cuatro marchas adelante tendrá en dichos ejes la representación: Las relaciones de demultiplicación primario/secundario vendrán dadas por:

58 Las relaciones de transmisión expuestas cumplen que: Además cumplen que:

59 Efectivamente: Pero como: Por lo que: Luego el escalonamiento lógico de las velocidades de una caja de cambios cumple la condición de que las relaciones de demultiplicación están en progresión geométrica.

60

61

62

63

64 1.- Corona 2.- Satélite 3.- Portasatélites 4.- Planetario

65

66

67

68

69

70

71

72

73 Ver video

74

75

76

77

78

79


Descargar ppt "Funciones: Transmitir la potencia a las ruedas Cambiar el torque y velocidad del motor en el torque y la velocidad requerida por las ruedas en cada."

Presentaciones similares


Anuncios Google