La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Propagación del impulso nervioso 13 de marzo de 2008 Osvaldo Álvarez. Fisiologia General 2008, Clases, Cable.ppt.

Presentaciones similares


Presentación del tema: "Propagación del impulso nervioso 13 de marzo de 2008 Osvaldo Álvarez. Fisiologia General 2008, Clases, Cable.ppt."— Transcripción de la presentación:

1 Propagación del impulso nervioso 13 de marzo de 2008 Osvaldo Álvarez. Fisiologia General 2008, Clases, Cable.ppt

2 Las ilustraciones mostradas en clases están depositadas en: Fisiología General 2008, Clases Las guías de laboratorio y los programas de simulación de nervios y canales de iones, están en: Fisiología General, 2008, Guías

3 Lecturas complementarias del libro Biofísica y Fisiología Celular de Latorre et. al. Capítulo 8. La electricidad animal y los primeros pasos de la electrofisiología. Capítulo 3. Vías y modelos de transporte a través de membranas. Capítulo 9. El impulso nervioso. Capitulo 10. Canales de iones dependientes del potencial eléctrico. Capítulo 11. Biología molecular de los canales de iones.

4 Latorre Bezanilla

5 Además, de Francisco Bezanilla: The Nerve Impulse: Fisiologia General 2008, Lecturas, TheNerveImpulse.pdf

6 Dosidicus gigas

7

8 Simulación de la propagación del impulso nervioso Por Francisco Bezanilla:

9

10

11

12

13

14

15

16

17

18 a = 238 m Estímulo 10 A, 0.25 ms

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35 1.0 cm en 1 ms = 10 m/s

36 a = 20 m Estímulo 0.3 A, 0.25 ms a = 238 m Estímulo 10 A, 0.25 ms

37 a = 20 m Estímulo 0.3 A, 0.25 ms

38

39 0.3 cm en 1 ms = 3 m/s

40 Teoría del cable La constante de espacio

41 Proyecto escolar Telégrafo

42 V R1R1 I R3R3 R2R2 R4R4

43 Morse code 1830 Señal de emergencia: Letter Frequency in the English Language e t a o i n s r h l d c u m f p g w y b v k x j q z

44 Tele-typewriter mA

45 A B C D E F G H I ASCII Table (7-bit) (se pronuncia asqui) (ASCII = American Standard Code for Information Interchange) 20 mA 0 mA110 bps Mark 1 Space 0

46 AVISO:La asistencia al trabajo de laboratorio se controla por la entrega del informe en antes de las 23:59 del lunes 24 de marzo. Mandar archivo *.zip y poner informe en el asunto de la carta. Máximo 1MB. No es obligación hacerlo en el laboratorio. El trabajo lo pueden hacer en su casa usando la guía.doc y el programa *.xls disponibles en

47 La ley de Ohm 20mA 100 km 1mm 2 ¿Qué diferencia de potencial se necesita para pasar 20 mA por un alambre de 1 mm 2 de sección y de 100 km de largo ? = resistencia específica o resistividad eléctrica l = longitud a = área

48 V ¿Cómo varía el potencial eléctrico a lo largo del cable?

49

50

51 El cable en el vacío V V V V V V

52 El cable en un medio conductor

53 V V V V V V

54 Resistencia interna y del aislante l a

55 Teoría del cable l 1 cm

56 El problema: Si en el extremo izquierdo del axón hay un potencial de membrana V m(0), ¿qué potencial habrá en un punto alejado x unidades de longitud?

57 ¿Por qué es importante esta pregunta? Porque una despolarización de la membrana produce la excitación de la membrana. El impulso nervioso viaja a lo largo del axón porque una zona excitada puede excitar a una región vecina. La distancia de la nueva zona excitada depende de la distancia a que alcanza a propagarse pasivamente la despolarización. Cuanto más lejos se propague pasivamente la despolarización, más rápida será la conducción del impulso nervioso. Nota. El potencial propagado pasivamente se llama electrotono. V x

58 El problema: Si en el extremo izquierdo del axón hay un potencial de membrana V m(0), ¿qué potencial habrá en un punto alejado x unidades de longitud? Im Calcule la caída de voltaje entre el punto 1 y el punto Por la membrana se escapa una corriente Im

59 El problema: Si en el extremo izquierdo del axón hay un potencial de membrana V m(0), ¿qué potencial habrá en un punto alejado x unidades de longitud? El potencial decae con la distancia debido a la corriente I m que se pierde a través de la membrana. Im

60 El problema: Si en el extremo izquierdo del axón hay un potencial de membrana V m(0), ¿qué potencial habrá en un punto alejado x unidades de longitud? El potencial decae con la distancia debido a la corriente I m que se pierde a través de la membrana. Im

61 El problema: Si en el extremo izquierdo del axón hay un potencial de membrana V m(0), ¿qué potencial habrá en un punto alejado x unidades de longitud? El potencial decae con la distancia debido a la corriente I m que se pierde a través de la membrana. Im

62 El problema: Si en el extremo izquierdo del axón hay un potencial de membrana V m(0), ¿qué potencial habrá en un punto alejado x unidades de longitud? El potencial decae con la distancia debido a la corriente I m que se pierde a través de la membrana. Im

63 El problema: Si en el extremo izquierdo del axón hay un potencial de membrana V m(0), ¿qué potencial habrá en un punto alejado x unidades de longitud? ¿Será la igual la caída de potencial en todos los elementos de longitud a lo largo del axón?. Im 5Im4Im3Im2ImIm

64 La corriente axial interna x x+ x V i(x) = Potencial eléctrico interno en el punto x. (volt) I i = Intensidad de la corriente interna. (amper) R i = Resistencia de cada centímetro de axoplasma ( ohm/cm ) x = distancia ( cm ) V i(x) V i(x+ x)

65 La corriente axial externa x x+ x V o(x) = Potencial eléctrico externo en el punto x. (volt) I o = Intensidad de la corriente externa. (amper) R o = Resistencia de cada centímetro de líquido extracelular ( 0hm/cm ) x = distancia ( cm ) V o(x) V o(x+ x)

66 El potencial de membrana. El potencial eléctrico de la membrana, V m, es la diferencia entre el potencial eléctrico intracelular menos el extracelular en cada punto a lo largo del axón.

67 La corrientes axiales y el potencial de membrana.

68 La corriente que atraviesa la membrana. La intensidad de la corriente que atraviesa la membrana por cada centímetro de axón es I m(x) ( A / cm ). Se define como positiva la corriente de salida.

69 Balance de las corrientes x x+ x

70 Relación entre potencial de membrana y la corriente transmembrana.

71 Relación entre V m y la corriente I m Reformulación de la ecuación diferencial Primera iteración

72 ¿Qué unidades tiene la razón (R o +R i )/R m ? cm -2, Constante de espacio, cm

73

74

75 Solución de la ecuación diferencial Sabemos que la solución tiene que ser de la forma Derivándola dos veces tenemos Eliminando la 2 a derivada y haciendo 2 1 / 2

76 Calcular el potencial a una distancia igual a la constante de espacio.

77

78

79

80

81

82

83 d d=5cm d=3cm Demuestre que tiende a para d Axón infinitamente largoAxón de largo d cm

84 Análisis de la constante de espacio para R i R o R m = Resistencia de 1 cm lineal de membrana ( cm). R i = Resistencia de 1 cm lineal de axoplasma ( cm -1 ). R m y R i dependen del radio del axón, a, (cm).

85 La resistencia específica del axoplasma, i, es la resistencia un trozo de 1cm 2 de sección y 1cm de longitud ( cm ). Para calcular la resistencia de un trozo de axoplasma ( ) es necesario dividir la resistencia específica por el área de la sección circular del axón y multiplicar por la longitud del trozo. l a La sección circular del cilindro es a 2, cm 2. La resistencia de un trozo de largo l es: i l/ a 2, ( ). La sección circular del cilindro es a 2, cm 2. La resistencia de un trozo de largo l es: i l / a 2, ( ). La resistencia de 1 cm lineal de axoplasma, R i, es i / a 2, ( cm -1 ).

86 La resistencia específica de la membrana, r m, es la resistencia de 1 cm 2 de membrana ( cm 2 ). Para calcular la resistencia de la membrana ( ) de un axón es necesario dividir la resistencia específica por el área de membrana. El área del manto del cilindro es 2 al, cm 2. La resistencia de la membrana es r m /2 al, ( ). La resistencia de la membrana de 1 cm lineal de axón, R m, es: r m /2 a, ( cm). l a El área del manto del cilindro es 2 al, cm 2. La resistencia de la membrana es r m /2 a l, ( ).

87 Análisis de la constante de espacio para R i R o Como R m depende del radio del axón y R i depende del radio al cuadrado, entonces la constante de espacio debe depender del radio. Compare la velocidad de conducción de axones delgados y gruesos.

88 Datos para al axón de jibia. Capacidad eléctrica Fcm -2 (1) Cole, K. S. and H. J. Curtis (1939). J. Gen. Physiol. 22, 649–670 Resistencia específica de axoplasma 19.7 cm(2) Cole K. S. J Gen Physiol : Resistencia específica de axolema cm 2 (3). Haydon DA, Urban BW. J Physiol (London) : Calcular la constante de espacio para axones de jibia de 10, 100 y 1000 micrones de diámetro.

89 AVISO: Para confeccionar la lista de correo insistimos en solicitarle, a cada uno de ustedes, mandar una carta electrónica a poniendo la palabra informe en el tema o asunto del mensaje.

90 Teoría del cable La constante de tiempo

91 a = 238 m Estímulo 50 A 0.10 ms o 10 A por 40 ms 40 ms 100 s ¿La constante de espacio depende del tiempo?

92 0,2 ms 2 ms 0,4 ms 50 ms ¿La constante de espacio depende del tiempo?

93 Análisis de la corriente transmembrana I m Primera iteración

94 Condensador Carga, coulomb, C Capacidad, farad, F Un condensador tiene una capacidad de 1 farad si adquiere una diferencia de potencial de 1 volt al cargarlo con 1 coulomb.

95 --++ Condensador = dos medios conductores separados por un aislante m A m 2 0 Permitividad del vacío = F m -1 Constante dieléctrica del material que separa los dos medios conductores. A Área de las placas. m 2 Separación de las placas. m.

96 El medio extracelular y el medio intracelular, ambos conductores, separados por la membrana, aislante, forman un condensador eléctrico. Medio extracelular Medio intracelular Membrana aislante Espesor de la membrana Constante diléctrica de la membrana A Área de la membrana

97 Corriente de carga de un condensador

98 Análisis de la corriente transmembrana I m

99 La corriente I m circula por dos vías paralelas I m = Intensidad de corriente (A) R m =Resistencia de la membrana ( ) C m =Capacidad de la membrana (F)

100 Para t dV/dt = 0 I = V /R V = IR

101 =Constante de tiempo ( s ) ¿Unidades de RC?

102 V ( ) V (0) I V -V o = IR R = (V -V o ) /I para I = 0,23 nA (V -V o ) = 23mV ¿La resistencia de la membrana? 100 M V (0)

103 Para t = RC e -t/RC = e -1 = 0,37 V (0) -V ( ) RC = 60 mseg ¿La capacidad de la membrana? 600 pF

104 Para las membranas celulares la capacidad por unidad de área es 1 F cm -2 C = F 0 = F m -1 = 2 A = 1 cm 2 = ?

105 l a Para 1 cm de axón ¿Cambia la constante de tiempo en función del radio del axón?

106 Balance de las corrientes x x+ x

107 La corrientes axiales y el potencial de membrana.

108 Relación entre potencial de membrana y la corriente transmembrana.

109 La corriente I m circula por dos vías paralelas I m = Intensidad de corriente (Acm -1 ) R m =Resistencia de la membrana ( cm) C m =Capacidad de la membrana (Fcm -1 )

110 Reformulación de la ecuación diferencial = Constante de espacio, cm. = Constante de tiempo, s.

111 0 cm 1,5 cm 3 cm 4,5 cm Tiempo, ms Vm, mV

112

113 Electro micrografía de una sección longitudinal de un axón de un nervio periférico, con un nodo de Ranvier Vaina de mielina 200 nm Membrana nodal del axón. 4 nm Citoplasma del axón

114 Calcule el número de moles de iones Na + necesarios para despolarizar, desde -60 a +40 mV, 1 cm lineal de un axón de 0.5 m de diámetro. 1.Con vaina de mielina 2.Sin vaina de mielina Si el espesor de la membrana axonal es 2 nm, y el de la vaina de mielina es 200 nm

115


Descargar ppt "Propagación del impulso nervioso 13 de marzo de 2008 Osvaldo Álvarez. Fisiologia General 2008, Clases, Cable.ppt."

Presentaciones similares


Anuncios Google