La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Prof. Rosario Martínez Verdú. TEMA 3: ESTIMACIÓN 1. Estimación puntual: estimadores y estimaciones. Propiedades de los estimadores. 2. Métodos de obtención.

Presentaciones similares


Presentación del tema: "Prof. Rosario Martínez Verdú. TEMA 3: ESTIMACIÓN 1. Estimación puntual: estimadores y estimaciones. Propiedades de los estimadores. 2. Métodos de obtención."— Transcripción de la presentación:

1 Prof. Rosario Martínez Verdú

2 TEMA 3: ESTIMACIÓN 1. Estimación puntual: estimadores y estimaciones. Propiedades de los estimadores. 2. Métodos de obtención de estimadores. 3. Estimación por intervalos. 4. Determinación del tamaño muestral. Bibliografía específica Tema 3: - NEWBOLD, P. (1997). Estadística para los Negocios y la Economía. Madrid: Prentice Hall. 4ª Edición. Capítulos 7 y 8. - NEWBOLD, P. y otros (2008). Estadística para Administración y Economía. Madrid: Pearson-Prentice Hall. 6ª Edición. Capítulos 8 y 9. - ESTEBAN GARCÍA, J. y otros: Curso Básico de Inferencia Estadística. Reproexpres Ediciones, Valencia, Tema 4 (sin anexos) y Tema 5. - LIND D.A y otros. Estadística Aplicada a los Negocios y la Economía. Ed. McGraw Hill, México, (13ª Edición). Capítulo 9. - MURGUI, J.S. y otros (2002). Ejercicios de Estadística. Economía y Ciencias Sociales. Valencia: Tirant lo Blanch. Capítulo 7.

3 Consiste en la obtención de valores aproximados para las características desconocidas (parámetros) de la distribución de la población. Tipos de estimación: - Puntual: un valor. Apartado 1 - Por intervalos: un intervalo con garantías de contener al parámetro. Apartado 3 TEMA 3: ESTIMACIÓN DE PARÁMETROS

4 Estadísticos Estimadores de Estrategias de búsqueda de estimadores de un parámetro : - Proponer estimadores con buenas propiedades (Apartado 1). - Aplicar un método de construcción de estimadores: Estimadores Máximo- Verosímiles (EMV) (Apartado 2). 1) ESTIMACIÓN PUNTUAL Estimadores y Estimaciones:

5 PROPIEDADES DE LOS ESTIMADORES PARA TODO TIPO DE MUESTRAS: ESTIMADOR INSESGADO significa que su media o valor esperado coincide con el parámetro, esto es: ESTIMADOR EFICIENTE: si para estimar un mismo parámetro, disponemos de varios estimadores insesgados, el estimador eficiente será el de menor varianza. Para elegir entre diferentes estimadores para estimar un mismo parámetro nos basaremos en una medida, el ERROR CUADRÁTICO MEDIO (ECM): El criterio: elegir el estimador que tenga el menor ECM.

6 E[A]= f(A)f(B) A estimador insesgado E[A]= B estimador sesgado E[B] Var[A] = Var[B] ECM[A] < ECM[B] A mejor estimador que B E[B] f(A) f(B) A y B insesgados E[A]=E[B]= Var[A] > Var[B] ECM[A] > ECM[B] B mejor estimador que A Caso 1: A y B misma varianza Distribuciones de probabilidad de dos estimadores A y B de un parámetro poblacional Caso 2: A y B estimadores insesgados

7 PROPIEDADES DE LOS ESTIMADORES PARA MUESTRAS GRANDES: ESTIMADOR ASINTÓTICAMENTE INSESGADO significa que al aumentar el tamaño de la muestra, su media tiende a coincidir con el parámetro, y por lo tanto, su sesgo tiende a cero. Esto es, ESTIMADOR CONSISTENTE significa que a medida que crece el tamaño de la muestra las estimaciones que nos proporciona el estimador se aproximan cada vez más al valor del parámetro. Si el estimador es insesgado o asintóticamente insesgado, para que sea consistente es suficiente que, cuando el tamaño de la muestra tiende a infinito (es decir, se hace muy grande), la varianza del estimador se aproxime a cero. Esto es,

8 Ejemplo de estimador consistente Al crecer el tamaño de la muestra, las estimaciones de se aproximan cada vez más al verdadero valor del parámetro.

9 CUADRO RESUMEN ESTIMADORES PUNTUALES Distribución Población Parám- etro a estimar Estima- dor Propiedades estimador Otras propie- dades Poisson X Po( ) insesgado, eficiente, consistente EMV Bernoulli X Be(p) p insesgado, eficiente, consistente EMV Normal X insesgado, eficiente, consistente EMV Normal X 2 S2S2 asint. insesgado, menor ECM que cuasi-var EMV Exponencial: X Exp( 1/ ) insesgado, eficiente, consistente EMV Sin especificar insesgado, consistente Sin especificar 2 S2S2 asint. insesgado insesgado EMV= Estimador máximo-verosímil

10 EJEMPLO DE ESTIMACIÓN MÁXIMO-VEROSÍMIL La Agencia Valenciana de Turismo va a realizar un estudio sobre las preferencias de los habitantes de la ciudad de Valencia respecto al lugar de vacaciones elegido. Únicamente se quiere distinguir entre montaña y playa. Realizada una encuesta a 100 personas elegidas al azar se ha obtenido que 30 de ellas prefieren la montaña y las 70 restantes han mostrado preferencia por la playa. Con la información de la encuesta, ¿cuál de los siguientes posibles valores para la proporción de ciudadanos que prefieren la montaña tiene una mayor verosimilitud o es más compatible con los datos obtenidos de la encuesta: 25%, 30% o 35%? Fuente: MURGUI, J.S. y otros (2002). Ejercicios de Estadística. Economía y Ciencias Sociales. Valencia: Tirant lo Blanch, p Métodos de obtención de estimadores.

11 l(p) =p 30 (1-p) 70 p l(p)

12 3. Estimación por intervalos o Intervalos de confianza Objetivos de este Apartado: Concepto de Intervalo de Estimación Concepto de nivel de confianza 1- Precisión de una estimación por intervalo, depende de: –Nivel de confianza 1- –Amplitud del intervalo (error de estimación) Construcción de intervalos de estimación para los principales parámetros poblacionales.

13 Intervalos para la estimación de la media de una población Caso 1 a) Población muestra: (x 1, x 2, …,x n ) m.a.s. tamaño n cualquiera. Se fija nivel de confianza 1- Se sustituye por el valor obtenido para la muestra,, y se obtiene el intervalo: Se despeja :

14 EJEMPLO INTERVALOS DE ESTIMACIÓN Sea Población X: peso de los paquetes de cereal, en gramos. X~N(, 2 =100) Muestra: (x 1, x 2,...., x n ) m.a.s. n=16 Intervalos de confianza para : Intervalo de confianza del 90% 498,85 507,86 Error =4,11 gr 499,64 508,65 Intervalo de confianza del 95% Error =4,90 gr Intervalo de confianza del 99% 497,32510,18 Error =6,43 gr

15 Intervalos para la estimación de la media de una población Caso 2: Población muestra: (x 1, x 2, …,x n ) m.a.s. tamaño n cualquiera. Se fija nivel de confianza 1- : Se sustituyen por los valores obtenidos para la muestra y se obtiene el intervalo: Se despeja :

16 Intervalo para la estimación de la varianza 2 de una población Normal Caso 6: Población muestra: (x 1, x 2, …,x n ) m.a.s. tamaño n cualquiera. Se fija nivel de confianza 1- : Se sustituye S 2 por el valor obtenido para la muestra y se obtiene el intervalo: Se despeja 2 :


Descargar ppt "Prof. Rosario Martínez Verdú. TEMA 3: ESTIMACIÓN 1. Estimación puntual: estimadores y estimaciones. Propiedades de los estimadores. 2. Métodos de obtención."

Presentaciones similares


Anuncios Google