La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Material preparado por Lic. Olga Susana Filippini y Lic. Hugo Delfino Estimadores puntuales y por intervalo de confianza para media y varianza poblacionales.

Presentaciones similares


Presentación del tema: "Material preparado por Lic. Olga Susana Filippini y Lic. Hugo Delfino Estimadores puntuales y por intervalo de confianza para media y varianza poblacionales."— Transcripción de la presentación:

1 Material preparado por Lic. Olga Susana Filippini y Lic. Hugo Delfino Estimadores puntuales y por intervalo de confianza para media y varianza poblacionales

2 Material preparado por Lic. Olga Susana Filippini y Lic. Hugo Delfino El único método científico para validar conclusiones sobre un grupo de individuos a partir de la información que nos proporciona un subconjunto más o menos amplio de los mismos es el Método Estadístico. En el experimento típico, el objetivo básico es estimar algunas características que describan la población de interés. Es decir: Estimar los parámetros que caracterizan a la función de probabilidad de la variable aleatoria en estudio Introducción al tema

3 Material preparado por Lic. Olga Susana Filippini y Lic. Hugo Delfino Mapa conceptual ESTADÍSTICA Conceptos Básicos Estadística Descriptiva PoblaciónMuestra PROBABILIDAD Conceptos Básicos Distribuciones de Probabilidad Distribuciones en el Muestreo Desigualdad de Tchebysheff, Ley de los grandes Números, Teorema Central del Limite. INFERENCIA Estimación Prueba de Hipótesis para una y dos poblaciones ParámetroEstimador Discretas, Binomial, otras Continuas, Normal, ji-cuadrado, t de Student Puntual Por intervalos

4 Material preparado por Lic. Olga Susana Filippini y Lic. Hugo Delfino Veamos el caso de un especialista en producción animal: Después de alimentar un lote de terneros con una ración alimenticia particular, necesita expresar numéricamente el aumento medio de peso de sus animales. En este caso, suponemos que se dispone de los conocimiento suficientes como para decir: La variable aleatoria x de nuestro problema, tiene una función de probabilidad conocida: f (X; 1 ; 2 ;... ; p ) y depende de: Parámetros 1 hasta p que son desconocidos. Podría ocurrir que el aumento de peso de los terneros siguieran una distribución normal con media y varianza 2. Introducción al tema

5 Material preparado por Lic. Olga Susana Filippini y Lic. Hugo Delfino En este caso el experimentador persigue como objetivo, estimar a y 2. Lo hará a partir de la manipulación de un conjunto de observaciones que ha de seleccionar de la población y que constituirán una muestra aleatoria de la misma. Introducción al tema

6 Material preparado por Lic. Olga Susana Filippini y Lic. Hugo Delfino Razonamiento a seguir: Pensar como se define la población y la muestra Qué tipo de procedimiento utilizar para seleccionar una muestra aleatoria. Qué debería calcular para estimar los parámetros de interés. (estadístico) Qué función de disitribución presentan los estimadores elegidos. Cómo validar las estimaciones a partir de la muestra. Es decir Inferir de la Muestra a la población Introducción al tema

7 Material preparado por Lic. Olga Susana Filippini y Lic. Hugo Delfino La inferencia estadística es la forma de tomar decisiones basadas en probabilidades y presenta dos aspectos: 1. Estimación de parámetros: - Puntual - Por intervalos 2. Prueba de Hipótesis con respecto a una función elegida como modelo. En esta clase discutiremos estos puntos Inferencia Estadística

8 Material preparado por Lic. Olga Susana Filippini y Lic. Hugo Delfino Estimación Puntual Una estimación puntual del valor de un parámetro poblacional desconocido (como puede ser la media, µ, o la desviación estándar, σ), es un número que se utiliza para aproximar el verdadero valor de dicho parámetro poblacional. Una estimación puntual es el valor de la estadística de la muestra correspondiente.

9 Material preparado por Lic. Olga Susana Filippini y Lic. Hugo Delfino Estimadores puntuales de los parámetros de una población normal Sea una muestra aleatoria simple, X 1, X 2,......, X n de una población con distribución N(, 2 ). Estimador de la media La distribución muestral de la media es :

10 Material preparado por Lic. Olga Susana Filippini y Lic. Hugo Delfino Estimadores puntuales de los parámetros de una población normal estima a la desviación típica de la media y se denomina error estándar de la media muestral, por esta razón se dice que el error estándar de la media mide la variabilidad de la media en el muestreo.

11 Material preparado por Lic. Olga Susana Filippini y Lic. Hugo Delfino Estimadores puntuales de los parámetros de una población normal Estimador de la Varianza es la Varianza muestral

12 Material preparado por Lic. Olga Susana Filippini y Lic. Hugo Delfino Estimadores puntuales de los parámetros de una población normal Sea X 1, X 2,..., X n, una muestra aleatoria simple de una población X N(, 2 ), entonces la variable aleatoria sigue una ji-cuadrado con n-1 grados de libertad.

13 Material preparado por Lic. Olga Susana Filippini y Lic. Hugo Delfino Estimadores puntuales de los parámetros de una población normal Del resultado anterior se deduce que la variable sigue una distribución ji-cuadrado con n-1 grados de libertad.

14 Material preparado por Lic. Olga Susana Filippini y Lic. Hugo Delfino Estimadores (continuación) Realizada la estimación de un parámetro cabe preguntarse: ¿ Es exacta la estimación? ¿Es probable que la estimación sea alta o baja? ¿Con otra muestra se obtendría el mismo resultado, o bastante diferente? La calidad de un procedimiento de estimación ¿mejora bastante si la estadística de la muestra es menos variable e insesgada a la vez?

15 Material preparado por Lic. Olga Susana Filippini y Lic. Hugo Delfino La distancia entre el estimador y el parámetro a estimar puede medirse mediante los que se denomina el error cuadrático medio, que se define como el valor esperado del cuadrado de la diferencia entre el estimador y el verdadero parámetro. Estimadores y propiedades deseables de los estimadores El ECM es importante ya que puede escribirse como una es la varianza del estimador y otra el cuadrado del sesgo.

16 Material preparado por Lic. Olga Susana Filippini y Lic. Hugo Delfino Ausencia de sesgo Se dice que un estimador es insesgado (o centrado) si la esperanza del estimador coincide con el parámetro a estimar En caso contrario se dice que es sesgado. Consistencia Se dice que un estimador es consistente si se aproxima cada vez más al verdadero valor del parámetro a medida que se aumenta el tamaño muestral. Estimadores y propiedades deseables de los estimadores La distribución del estimador se concentra más alrededor del verdadero parámetro cuando el tamaño muestral aumenta.

17 Material preparado por Lic. Olga Susana Filippini y Lic. Hugo Delfino Eficiencia Es claro que un estimador será tanto mejor cuanto menor sea su varianza, ya que se concentra más alrededor del verdadero valor del parámetro. Se dice que un estimador insesgado es eficiente si tiene varianza mínima. Suficiencia Un estimador es suficiente si utiliza una cantidad de la información contenida en la muestra de manera que ningún otro estimador podría extraer información adicional de la muestra sobre el parámetro de la población que se está estimando. Estimadores y propiedades deseables de los estimadores

18 Material preparado por Lic. Olga Susana Filippini y Lic. Hugo Delfino Estimadores y propiedades deseables de los estimadores

19 Material preparado por Lic. Olga Susana Filippini y Lic. Hugo Delfino Métodos de estimación Hay varios métodos de estimación, el de máxima verosimilitud es el que proporciona estimadores consistentes pero no siempre insesgados. Los estimadores mencionados en los puntos anteriores eran estimadores máximo verosimiles. El mismo resultado se puede obtener por el método de los momentos. El método de mínimos cuadrados se verá cuando se trate regresión.

20 Material preparado por Lic. Olga Susana Filippini y Lic. Hugo Delfino Dada una muestra aleatoria X 1, X 2,..., X n, de una población con función de densidad f(x; ) Un intervalo de confianza, de extremos L inferior y L superior, para el parámetro de la población es un par ordenado de funciones reales de las n medidas de la muestra I = [L inferior (X 1,...,X n );L superior (X 1,..., X n )] Construidas de forma que la probabilidad de que los extremos contengan al verdadero valor del parámetro es un valor prefijado (1 - ). Al número (1 - ) se le denomina nivel de confianza. Estimación por intervalos

21 Material preparado por Lic. Olga Susana Filippini y Lic. Hugo Delfino El nivel de confianza suele ser 0,95 (95%) ó 0,99 (99%). La interpretación práctica es sencilla, por ejemplo si el nivel de confianza es del 95%, significa que en el 95% de las veces que repitiéramos el experimento, el intervalo de confianza calculado contendría al verdadero valor del parámetro y en el 5% restante el intervalo no contendría el verdadero valor. Una vez que el intervalo de confianza ha sido calculado para una muestra concreta, el intervalo obtenido contiene o no contiene al verdadero valor del parámetro, con probabilidad 1, por esa razón, cuando ya tenemos un valor concreto hablamos de confianza y no de probabilidad. Confiamos en que el intervalo que hemos calculado sea del 95% que contiene el verdadero valor. Estimación por intervalos

22 Material preparado por Lic. Olga Susana Filippini y Lic. Hugo Delfino Nivel de confianza gráficamente

23 Material preparado por Lic. Olga Susana Filippini y Lic. Hugo Delfino Intervalo de confianza para la media poblacional, conocido Supongamos que disponemos de una población en la que tenemos una v.a. con distribución N(, ) con conocida (de estudios previos, por ejemplo). Obtenemos una muestra de tamaño n y deseamos estimar la media de la población. El estimador puntual de la misma es la media muestral cuya distribución muestral es conocida tendrá distribución normal estándar la cantidad

24 Material preparado por Lic. Olga Susana Filippini y Lic. Hugo Delfino Sobre la distribución N(0, 1) podremos seleccionar dos puntos simétricos -z /2 y z /2, tales que P(-z /2 Z z /2 ) = 1- Intervalo de confianza para la media poblacional, conocido

25 Material preparado por Lic. Olga Susana Filippini y Lic. Hugo Delfino Sustituyendo Z por su valor en este caso particular Despejando nos queda el intervalo de confianza, Intervalo de confianza para la media poblacional, conocido

26 Material preparado por Lic. Olga Susana Filippini y Lic. Hugo Delfino Ejemplo, Obtener un I. C. del 95% para el promedio de un lote de 500 novillos, de los cuales se pesa una muestra de 25 animales, obteniéndose un =390 kg. Se sabe que 2 es de 400 kg 2. Intervalo de confianza para la media poblacional, conocido

27 Material preparado por Lic. Olga Susana Filippini y Lic. Hugo Delfino Recordemos que si la varianza poblacional es desconocida y la variable es normal o se puede aproximar a la distribución normal por el Teorema central del límite, entonces se usaría la t de Student con n –1 grados de libertad y el desvío estándar muestral. El intervalo de confianza que resulta, Intervalo de confianza para la media poblacional, desconocido

28 Material preparado por Lic. Olga Susana Filippini y Lic. Hugo Delfino Ejemplo, En un establecimiento dedicado a la elaboración de alimentos balanceados para aves, se afirma que su producto aumenta el peso promedio de las aves en 30 gs diarios. En una muestra de 9 aves tomadas al azar, se obtuvo un aumento promedio de 35 grs. con desviación de 3,04 grs. Estimar el intervalo de confianza del 95% para el verdadero aumento promedio Intervalo de confianza para la media poblacional, desconocido

29 Material preparado por Lic. Olga Susana Filippini y Lic. Hugo Delfino Determinación del tamaño de muestra n para un grado de precisión dado es la mitad del ancho del intervalo de confianza (producto del coeficiente y el error estándar) y se denomina error máximo de estimación E. Dado un valor de error y un cierto nivel de confianza, puedo estimar cuál sería el tamaño de la muestra

30 Material preparado por Lic. Olga Susana Filippini y Lic. Hugo Delfino Sea X una variable aleatoria con distribución normal con y desconocidos y sea X 1, X 2,..., X n una muestra aleatoria de tamaño n. El intervalo de confianza se construye a partir de la variable Intervalo de confianza para la varianza poblacional Que tiene una distribución ji-cuadrado con n-1 grados de libertad y dos valores tales que delimiten el 100(1 - )%

31 Material preparado por Lic. Olga Susana Filippini y Lic. Hugo Delfino Reemplazando la variable 2 en el intervalo Intervalo de confianza para la varianza poblacional Despejando el intervalo de confianza queda,

32 Material preparado por Lic. Olga Susana Filippini y Lic. Hugo Delfino Ejemplo, Se sembró cierta variedad de trigo en parcela de cierta localidad, se extrajo una muestra al azar de 20 parcelas y se midió el rendimiento. Se obtuvo un rendimiento de 58 kilogramos por parcela y una desviación típica de 8 kg por parcela. Estimar la varianza poblacional con un nivel de confianza del 95%, sabiendo que el rendimiento se distribuye normalmente Intervalo de confianza para la varianza poblacional


Descargar ppt "Material preparado por Lic. Olga Susana Filippini y Lic. Hugo Delfino Estimadores puntuales y por intervalo de confianza para media y varianza poblacionales."

Presentaciones similares


Anuncios Google