La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

UNIVERSOS FRACTALES 1. Introducción. ¿Qué es un fractal? 2. Los primeros fractales de la historia De los fractales a la realidad. 3. Fractales del sistema.

Presentaciones similares


Presentación del tema: "UNIVERSOS FRACTALES 1. Introducción. ¿Qué es un fractal? 2. Los primeros fractales de la historia De los fractales a la realidad. 3. Fractales del sistema."— Transcripción de la presentación:

1

2

3 UNIVERSOS FRACTALES 1. Introducción. ¿Qué es un fractal? 2. Los primeros fractales de la historia De los fractales a la realidad. 3. Fractales del sistema L 4. Fractales del sistema IFS De la realidad a los fractales. 5. La dimensión de los fractales y los objetos reales 6. Universo homogéneo versus universo fractal Julio Bernués y María López

4 Introducción Benoit Mandelbrot Fractal: Del latín fractus, interrumpido o irregular Mandelbrot set

5 Introducción Benoit Mandelbrot Mandelbrot set Acta fundacional: Los objetos fractales, Tusquets 1975

6 Introducción Benoit Mandelbrot Acepto que se me califique de… padre de la revolución fractal… con sorpresa pero con gusto… Mandelbrot set

7 Introducción Benoit Mandelbrot He concebido, puesto a punto y utilizado extensamente una nueva geometría de la naturaleza Mandelbrot set

8 Introducción Benoit Mandelbrot Mi libro… es un documento histórico Mandelbrot set

9 ¿Qué es un fractal? Definición (provisional) 1. Un fractal es el producto final que se origina a través de la repetición infinita de un proceso geométrico bien especificado. Definición (provisional) 2. Un fractal es un conjunto cuya dimensión no es entera. ¿ Existen los fractales ?

10 Fractales autosemejantes. Los primeros fractales de la historia. 1. Curva de Koch Helge-von Koch ( )

11 Fractales autosemejantes. Los primeros fractales de la historia. 1. Curva de Koch 2. Triángulo de Sierpinski 3. Alfombra de Sierpinski Waclaw Sierpinski ( )

12 Fractales autosemejantes. Los primeros fractales de la historia. 1. Curva de Koch 2. Triángulo de Sierpinski 3. Alfombra de Sierpinski 4. Esponja de Menger

13 Fractales autosemejantes. Los primeros fractales de la historia. 1. Curva de Koch 2. Triángulo de Sierpinski 3. Alfombra de Sierpinski 4. Esponja de Menger Menger ( )

14 Fractales autosemejantes. Los primeros fractales de la historia. 1. Curva de Koch

15 Fractales autosemejantes. Los primeros fractales de la historia. 1. Curva de Koch

16 Fractales autosemejantes. Los primeros fractales de la historia. 1. Curva de Koch

17 Fractales autosemejantes. Los primeros fractales de la historia. 2. Triángulo de Sierpinski

18 Fractales autosemejantes. Los primeros fractales de la historia. 3. Alfombra de Sierpinski

19 Fractales autosemejantes. Los primeros fractales de la historia. 3. Alfombra de Sierpinski

20 Fractales autosemejantes. Los primeros fractales de la historia. 4. Esponja de Menger

21

22 Fractales del sistema L 1. Curva de Koch como sistema L

23 Fractales del sistema L 1. Curva de Koch como sistema L Alfabeto: F, +, - Axioma: F Reglas: F -> F + F - - F + F + -> + - -> - Significado: F = Avanzar una unidad + = Giro de 60º - = Giro de - 60º Paso 1: F Paso 2: F + F - - F + F Paso 3:(F + F - - F + F)+(F + F - - F + F)- -(F + F - - F + F)+(F + F - - F + F)

24 Fractales del sistema L 2. Construcción de objetos reales

25 Fractales del sistema L 2. Construcción de objetos reales

26 Fractales del sistema L 2. Construcción de objetos reales

27 Fractales del sistema L 2. Construcción de objetos reales

28

29 Fractales del sistema L 3. Una dimensión más. Paisajes fractales

30 Fractales del sistema L 3. Una dimensión más. Paisajes fractales

31 Fractales del sistema L 3. Una dimensión más. Paisajes fractales

32 Fractales del sistema L 3. Una dimensión más. Paisajes fractales

33

34

35

36

37

38 Fractales del sistema IFS Método creado por M.F. Barnsley en 1985 basado en la iteración de varias funciones de la forma

39 Fractales del sistema IFS 1. Brocoli IFS F

40 Fractales del sistema IFS 2. Helecho de Barnsley

41

42 La dimensión de los fractales y de los objetos reales 1. Método de contar cajas La dimensión de un conjunto viene dada por la fórmula Donde N(h) es el número de bolas de diámetro h que se necesitan para cubrir el conjunto. Ejemplo: Dimensión de un segmento es 1. Dimensión de una circunferencia es 1. Dimensión del fractal de Koch,

43 La dimensión de los fractales y de los objetos reales 1. Método de contar cajas La dimensión de un conjunto viene dada por la fórmula Donde N(h) es el número de bolas de diámetro h que se necesitan para cubrir el conjunto. Ejemplo: Dimensión de un segmento es 1. Dimensión de una circunferencia es 1. Dimensión del fractal de Koch,

44 La dimensión de los fractales y de los objetos reales 1. Método de contar cajas dimension (experimental) = 1.18 dimension (analytical) = 1.26 deviation = 6%

45 La dimensión de los fractales y de los objetos reales 1. Método de contar cajas (dimension (experimental) = 1.73 dimension analytical) = ?? deviation = ??

46 La dimensión de los fractales y de los objetos reales 1. Método de contar cajas Dimensión de costas y fronteras. (Lewis Fry Richardson, 1961). Costa de Africa del Sur: Dimensión= 1 Frontera terrestre de Alemania: Dimensión =1,18 Costa oeste de Gran Bretaña: Dimensión = 1,25 Frontera España-Portugal: Dimensión = 1,16

47 Resumiendo Los fractales son objetos sencillos de construir. La reiteración es la causa de su aparente complejidad. - Una característica de los fractales es su apariencia autosemejante. - En física sobre todo, se le llama fractal a todo objeto que tiene dimensión no entera.

48 Universo homogéneo versus universo fractal Is the universe fractal?, por V.J. Martínez, Science, vol 284 (1999) p. 445 ss Is the universe homogeneous on large scales?, por L. Guzzo, New Astronomy, vol 2 (1997) p. 517 ss Principio Cosmológico (Einstein): El universo es homogéneo a grandes escalas.

49 Universo homogéneo versus universo fractal Está aceptado que a pequeña escala el universo no es homogéneo. El universo tiene estructura fractal en escalas de hasta 50 millones de años luz. Dos opiniones: 1. El universo, a grandes escalas, es homogéneo. 2.El universo, a grandes escalas, tiene estructura fractal de dimensión: - Dimensión 1,00 (Mandelbrot) - Dimensión 2,00 (L. Pietronero) - Dimensión 1,2 - 1,5- 2,2 (otros autores)

50

51 Universo homogéneo versus universo fractal Indicaciones de que nuestro universo (visible) posee estructura fractal. Método 1. M(r) es el número de galaxias en un círculo de radio r centrado en la Tierra. Si la distribución fuese homogénea, M(r) crecería como r 3. En una escala de 450 millones de años luz, M(r) crece como r 2.

52 Universo homogéneo versus universo fractal Indicaciones de que nuestro universo (visible) posee estructura fractal. Método 2. C(r) es el número medio de galaxias en un círculo de radio r. Si la distribución fuese homogénea, C(r) crecería como r 3. En una escala de 450 millones de años luz, C(r) crece como r 2 (otros autores deducen exponentes distintos).

53


Descargar ppt "UNIVERSOS FRACTALES 1. Introducción. ¿Qué es un fractal? 2. Los primeros fractales de la historia De los fractales a la realidad. 3. Fractales del sistema."

Presentaciones similares


Anuncios Google