La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

UNIVERSIDAD COMPLUTENSE DE MADRID D epartamento de Fundamentos del Análisis Económico I Teoría de juegos: Tema 1 Rafael Salas febrero de 2013.

Presentaciones similares


Presentación del tema: "UNIVERSIDAD COMPLUTENSE DE MADRID D epartamento de Fundamentos del Análisis Económico I Teoría de juegos: Tema 1 Rafael Salas febrero de 2013."— Transcripción de la presentación:

1 UNIVERSIDAD COMPLUTENSE DE MADRID D epartamento de Fundamentos del Análisis Económico I Teoría de juegos: Tema 1 Rafael Salas febrero de 2013

2 Teoría de juegos Cómo individuos racionales toman decisiones cuando son interdependientes Individualismo Racionalismo Interdependencia Tipos de juegos: estáticos (simultáneos), dinámicos. con información perfecta, con incertidumbre, con información incompleta. estrictamente competitivos (intereses contrapuestos), no competitivos (intereses comunes). Conflicto-cooperación. juegos de suma cero

3 Elementos del juego Jugadores: 1,...,n n>1 la naturaleza, en juegos de azar, un jugador más en numerosas ocasiones n=2 Acciones: A 1,...,A n y donde A i ={a i / a i A i } decisiones que puede tomar cada jugador en un momento dado Estrategias: S 1,...,S n y donde S i ={s i / s i S i } plan completo de acciones de cada jugador Perfil de estrategias un conjunto de estrategias, una por cada jugador (s 1,...,s n ) S donde s 1 S 1,..., s n S n existen S 1 xS 2 x...xS n perfiles posibles

4 Elementos del juego (2) Resultados del juego modos en que puede acabar el juego tiene consecuencias para cada jugador Pagos o función de ganancias representan los beneficios o utilidad al acabar el juego uno para cada jugador para perfil de estrategias u i (s) definidos sobre todo s=(s 1,...,s n ) S u i :S R existen tantos pagos posibles para cada jugador, como elementos en S=S 1 xS 2 x...xS n pueden ser magnituder ordinales (utilidad) o cardinales (utilidad esperada, beneficios)

5 Representación del juego Forma estratégica o normal Forma extensiva

6 Representación del juego (1) Forma estratégica o normal G={{1,...,n}; S 1,...,S n ; U 1,...,U n } Gráficamente: mediante una tabla con una entrada para cada jugador, donde aparecen todas las estrategias y los pagos correspondientes a todas los perfiles de estrategias posibles. Ejemplos: (juegos simultáneos) 1. Batalla de los sexos 2. Pares o nones (ó juego de las monedas) 3. Juegos con preferencia idénticas 4. Dilema de los presos 5. Halcón-paloma

7 1. La batalla de los sexos. JUG 2 JUG 1 4, 1 BO B O 1, 4 0, 0 -1, -1

8 Elementos del juego 1 Conjunto de jugadores: N={1,2} ó n=2 Conjunto de acciones de los jugadores 1 y 2: A 1 ={ B,O} y A 2 ={ B,O} Conjunto de estrategias de los jugadores 1 y 2: S 1 ={ B,O} y S 2 ={ B,O} Hay 4 perfiles de estrategias: (B,B), (B,O), (O,B) y (O,O) Los pagos de los jugadores 1 y 2: u 1 (B,B)=4, u 1 (B,O)=0, u 1 (O,B)=-1, u 1 (O,O)=1 u 2 (B,B)=1, u 2 (B,O)=0, u 2 (O,B)=-1, u 2 (O,O)=4

9 Estructura del juego 1 u 1 (B,B) > u 1 (O,O) > u 1 (B,O) > u 1 (O,B) u 2 (O,O) > u 2 (B,B) > u 2 (B,O) > u 2 (O,B) No es un juego estrictamente competitivo. Ni de preferencias idénticas. Juego parcialmente competitivo Región de ganancias cooperativas (existe margen para la negociación) SOLUCIÓN: La veremos una vez definamos conceptos de equilibrio adecuados. Se trata de predecir lo que los individuos racionales van a hacer, descentralizadamente. Muchos juegos en economía responden a este patrón (dos departamentos de una empresa utilizando mismos programas informáticos o diferentes)

10 2. El juego de las monedas. JUG 2 JUG 1 1, -1 CACR CA CR 1, -1 -1, 1

11 Estructura del juego 2 u 1 (CA,CA) = u 1 (CR,CR) > u 1 (CA,CR) = u 1 (CR,CA) u 2 (CR,CA) = u 2 (CA,CR) > u 2 (CR,CR) = u 2 (CA,CA) Es un juego estrictamente competitivo (preferencias opuestas). No existe margen para la negociación. Juego de suma cero. No son muy interesantes desde el punto de vista económico, aunque tienen propiedades matemáticas interesantes.

12 3. Preferencias idénticas. JUG 2 JUG 1 1, 1 IZQDCHA IZQ DCHA 1, 1 -1, -1

13 Estructura del juego 3 u 1 (I,I) = u 1 (D,D) > u 1 (I,D) = u 1 (D,I) u 2 (I,I) = u 2 (D,D) > u 2 (I,D) = u 2 (D,I) Es un juego con preferencias idénticas. Fácil ponerse de acuerdo y cooperar. No existe conflicto. No son muy interesantes desde el punto de vista económico. Los individuos cooperaran. Los interesantes son los parcialmente competitivos, donde hay margen para la negociación.

14 4. Dilema de los presos. JUG 2 JUG 1 2, 2 CACO CA CO 1, 1 0, 4 4, 0

15 Estructura del juego 4 u 1 (CO,CA) > u 1 (CA,CA) > u 1 (CO,CO) > u 1 (CA,CO) u 2 (CA,CO) > u 2 (CA,CA) > u 2 (CO,CO) > u 2 (CO,CA) Juego parcialmente competitivo Región de ganancias cooperativas (existe incentivos para cooperar) SOLUCIÓN: La veremos una vez definamos conceptos de equilibrio adecuados. Veremos como la solución es no cooperar (ineficiencia). Muchos juegos en economía tienen esta estructura y esta solución: Oligopolios Pesca Aranceles Carrera armamentista

16 4bis. Oligopolio. JUG 2 JUG , 1000 AB A B 600, , , -200

17 Ejemplo 5: Halcón-paloma. JUG 2 JUG 1 2-k, 2-k HP H P 2, 2 4, 0 0, 4

18 Estructura del juego 5 Si k<2: Dilema de los presos u 1 (P,H) > u 1 (P,P) > u 1 (H,H) > u 1 (H,P) u 2 (H,P) > u 2 (P,P) > u 2 (H,H) > u 2 (P,H) Si k>2: Juego diferente u 1 (P,H) > u 1 (P,P) > u 1 (H,P) > u 1 (H,H) u 2 (H,P) > u 2 (P,P) > u 2 (H,P) > u 2 (H,H)

19 Ejemplo 5bis ciervo-liebre. JUG 2 JUG 1 2 CL C L

20 Ejemplo 5bis: ciervo-liebre. JUG 2 JUG 1 2 CL C L 1/

21 Representación en forma extensiva (1) Forma extensiva Se resalta la secuencia y el tipo de información disponible. Se añade información sobre: El momento en que cada jugador toma la decisión El conjunto de información disponible en cada momento Se representa mediante un árbol, que se compone de: Un conjunto de nodos (vértice) Ramas (aristas) No hay ciclos

22 Representación en forma extensiva (2) Elementos (de dominio público): Jugadores Nodo inicial (raíz): donde aparece la primera decisón. Si los juegos son finitos, terminan en nodos terminales (donde aparecen los pagos de cada jugador) Los nodos intermedios son nodos de decisión. De ellos salen ramas que representan las acciones o las decisiones de los jugadores en ese punto del juego. Si hay incertidumbre, los nodos que configuran una jugada de azar son nodos de incertidumbre, donde mueve de la naturaleza. De ellos salen ramas que representan sucesos posibles con sus probabilidades. En este caso los pagos son pagos o utilidades esperadas.

23 Representación en forma extensiva (3) Elementos (de dominio público): Conjuntos de información: todo lo que conoce el jugador a la hora de decidir. En los juegos con información perfecta: se conoce todo el desarrollo del juego hasta ese momento. El jugador sabe en el nodo que se encuentra. El conjunto de información se compone de un solo nodo. En los juegos con información imperfecta: puede que un jugador no conozca en todo el desarrollo del juego en qué nodo se encuentre. El conjunto de información se compone de más de un nodo. Esta característica es la que define información imperfecta más que si hay incertidumbre, como veremos con los ejemplo siguientes.

24 Representación en forma extensiva (4) Elementos (de dominio público): Estrategias puras: Es un plan contingente completo. Es un conjunto de acciones para cada conjunto de información. Jugadas (o Partida): Una secuencia de aristas que van desde el nodo inicial al final. La representamos entre corchetes. Todo esto es de conocimiento común. Veamos algunos ejemplos clarificadores... En general, se tratan de juegos dinámicos. Pero los juegos estáticos también pueden representarse en forma extensiva....Y los juegos dinámicos también se pueden representar en forma estratégica o normal. Hay que evitar esa confusión. Veamos...

25 Ejemplo (1, -1) d i I D (-1, 1) (1, -1) ID M 2 (1, -1) (-1, 1) 2 1 D id I

26 Ejemplo 6: elementos (1) Juego dinámico con 2 jugadores, de suma cero Información perfecta, sin jugadas de azar 5 conjuntos de información (C.I.) con un nodo de decisión cada uno Acciones asociadas a cada C.I.: C.I 1 (nodo inicial) El jugador 1 tiene dos acciones posibles {i,d} C.I. 2 El jugador 2 tiene dos acciones posibles {I,D} C.I. 3 El jugador 2 tiene tres acciones posibles {I,M,D} C.I. 4 El jugador 2 tiene dos acciones posibles {I,D} C.I. 5 El jugador 1 tiene dos acciones posibles {i,d}

27 Ejemplo 6: elementos (2) Estrategias puras 4 para el jugador 1: {ii,id,di,dd} 12 para el jugador 2: {III,IID, IMI,IMD,IDI,IDD,DII,DID,DMI,DMD,DDI,DDD} Jugadas: ejemplo [d,I,I,d] Perfil de estrategias: ejemplo (di, IID) Representación en forma estratégica...

28 Ejemplo 7 7. Suponga el siguiente juego de dos jugadores. El jugador 1 escoge, primero, una carta alta (a) o baja (b), con igual probabilidad. Tras verla, puede pasar (P), en cuyo caso pierde el euro o no pasar (NP). Si no pasa, el jugador 2 la ve y tiene dos opciones: pasar (P), en cuyo el jugador 1 retira su euro, o apostar un euro (A). El jugador con la carta más alta gana y se llevan el dinero de la mesa. Represente el juego en forma extensiva..

29 Práctica 7. El jugador 1 elige primero una acción entre {L,M,R}. Después el jugador 2 la observa si es [L] o no y escoge a continuación entre {l,r} Tirole, p El jugador 1 elige primero entre {I,D}. Después el jugador 2 escoge entre {I,D} al observar [ I ] ó [ D ]. Después el jugador 3 observa [D,D] o no observa nada y escoge entre {I,D} Gibbons, p Represente el juego de las tres en raya. Binmore, p. 28; Mas-Collel et al., p. 220.

30 Práctica 10. Suponga el siguiente juego de dos jugadores que ponen 1 euro en la mesa. El jugador 1 escoge, primero, una carta alta (a) o baja (b), con igual probabilidad. Tras verla, puede pasar (P), en cuyo caso pierde el euro o apostar otro euro (A). Si apuesta, el jugador 2, que no la ve, tiene dos opciones: pasar (P), en cuyo caso pierde el euro, o apostar otro euro (A). Si la carta es alta gana el jugador 1 y si es baja gana el jugador 2. El que gane se llevan el dinero de la mesa. Represente el juego en forma extensiva y estratégica ¿Se trata de un juego estático o dinámico y de información perfecta o imperfecta? Ricart, ejemplo 4.

31 Práctica 7.1bis. Suponga el siguiente juego de dos jugadores que ponen 1 euro en la mesa. El jugador 1 escoge, primero, una carta alta (a) o baja (b), con igual probabilidad. Tras verla, puede pasar (P), en cuyo caso pierde el euro o seguir (S). Si sigue, el jugador 2, que no la ve, tiene dos opciones: pasar (P), en cuyo caso pierde el euro, o ver (V). Si la carta es alta gana el jugador 1 y si es baja gana el jugador 2. El que gane se lleva el dinero de la mesa. Represente el juego en forma extensiva y estratégica ¿Se trata de un juego estático o dinámico y de información perfecta o imperfecta? Es otra variante del juego 7 y 7.1..

32 UNIVERSIDAD COMPLUTENSE DE MADRID D epartamento de Fundamentos del Análisis Económico I Teoría de juegos: Tema 1 Rafael Salas febrero de 2013


Descargar ppt "UNIVERSIDAD COMPLUTENSE DE MADRID D epartamento de Fundamentos del Análisis Económico I Teoría de juegos: Tema 1 Rafael Salas febrero de 2013."

Presentaciones similares


Anuncios Google