La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

La Elipse Durante muchos siglos se consideró que las orbitas de los planetas eran circunferenciales, con la Tierra como centro. Pero estudiando las.

Presentaciones similares


Presentación del tema: "La Elipse Durante muchos siglos se consideró que las orbitas de los planetas eran circunferenciales, con la Tierra como centro. Pero estudiando las."— Transcripción de la presentación:

1 La Elipse Durante muchos siglos se consideró que las orbitas de los planetas eran circunferenciales, con la Tierra como centro. Pero estudiando las observaciones hechas por Tycho Brahe sobre el movimiento del planeta Marte, Kepler descubrió en 1610, que los planetas giran alrededor del Sol de modo que sus trayectorias son elípticas y el sol ocupa uno de los focos

2 LA ELIPSE La elipse es el lugar geométrico de todos los puntos P(x,y) cuya ubicación en el plano es tal que , la suma de sus distancias a dos puntos fijos de él es constante. Estos dos puntos fijos del plano, se llaman FOCOS y se designan por y Y P(x,y) O X

3 Elementos de la elipse Los elementos más importantes de la elipse son:
FOCOS: Los puntos fijos RECTA FOCAL: La recta a la que pertenecen los focos RECTA SECUNDARIA: La simetral del segmento CENTRO: Punto de intersección de las rectas focal y secundaria y que equidista de los focos . VÉRTICES : Puntos de intersección de la elipse con la recta focal. Se designan:

4 DISTANCIA FOCAL: Medida del segmento Se considera de longitud 2c.
EJE MAYOR: Segmento que se considera de longitud 2 a: a es el valor del semieje mayor . EJE MENOR: Segmento de la recta secundaria interceptada por la elipse . Se considera de longitud 2b : b es el valor del semieje menor. DISTANCIA FOCAL: Medida del segmento Se considera de longitud 2c. LADO RECTO : Cuerda focal perpendicular a la recta focal o eje de simetría . Su medida, como veremos más adelante, es

5 Elementos de la elipse b c c a a

6 Valor de la constante y excentricidad de la elipse
A toda elipse se le asocia un número real que llamamos EXCENTRICIDAD DE LA ELIPSE, designado por la letra e, y cuyo valor es : Dado que la excentricidad depende de las medidas de c y a, su valor está asociado con la forma de la respectiva elipse , es así que tenemos elipses ”más o menos achatadas. La excentricidad de la elipse es un número menor que 1. Si c tiende a cero, entonces e también tiende a cero, por lo tanto se forma una circunferencia

7 Ejemplo: 4 -3 3 -4 4 5 5 o o -4 Elipse de excentricidad e = Elipse de excentricidad e=

8 ECUACIÓN CANÓNICA DE LA ELIPSE
y (eje focal en el eje X) (0,b) P(x,y) La ecuación canónica de la elipse es : (a,0) (-a,0) X (0,-b)

9 Ecuación canónica de la elipse
( Eje focal en el eje Y ) Y (0,a) (-b,0) (b,0) X (0,-a)

10 Ejemplo 1 Determinar la ecuación de la elipse con focos (0,6) y (0,-6) y semieje menor 8 Solución: eje focal coincide con el eje Y Luego c =6 ; b = 8 y a = 10 La ecuación pedida es :

11 Ejemplo 2 Encontremos los elementos de elipse de ecuación
Tenemos a = 5 y b = 3, además C = 4, los elementos de la elipse son : FOCOS: EJE MAYOR : 2 a = 2·5 = 10 EJE MENOR : 2b = 2·3 = 6 LADO RECTO :

12 VERTICES: (5,0) y ( -5,0) EXCENTRICIDAD: y 3 -5 5 -4 4 X -3

13 ECUACIÓN PRINCIPAL DE LA ELIPSE
Sea el centro de la elipse el punto C(h,k) y el eje focal paralelo al eje X Y La ecuación principal de la elipse con centro en C(h,k) es: O k h X

14 ECUACIÓN GENERAL DE LA ELIPSE
Al desarrollar los cuadrados de binomio, ordenando la ecuación principal de la elipse e igualando a cero, encontramos la ecuación equivalente , llamada ECUACIÓN GENERAL DE LA ELIPSE A<B

15 EJEMPLO 1 Dada la ecuación principal de la elipse
Determine la ecuación general de la elipse Solución :

16 Ejemplo 2 Determinemos los elementos de la elipse de ecuación:
Ordenamos la ecuación para completar los cuadrados de binomio

17 Luego: h=8 y k =-3, (8,-3) además
Como esta elipse ha sido trasladada con respecto a su posición canónica, su eje focal también se ha trasladado en h=8 unidades. Por lo tanto, las coordenadas de los focos son:

18 En forma grafica tenemos:
Y 12 8 4 X -3 C(8,-3)


Descargar ppt "La Elipse Durante muchos siglos se consideró que las orbitas de los planetas eran circunferenciales, con la Tierra como centro. Pero estudiando las."

Presentaciones similares


Anuncios Google