Descargar la presentación
La descarga está en progreso. Por favor, espere
Publicada porChica Jaquez Modificado hace 9 años
1
@ Angel Prieto BenitoApuntes 2º Bachillerato C.S.1 MATEMÁTICAS A. CS II Tema IV Discusión de sistemas
2
@ Angel Prieto BenitoApuntes 2º Bachillerato C.S.2 PARÁMETROS TEMA 4.4 * 2º BCS
3
@ Angel Prieto BenitoApuntes 2º Bachillerato C.S.3 Recordatorio DISCUSIÓN Si al reducir la matriz ampliada A/B a la forma triangular aparece alguna fila en la que son nulos todos los elementos, excepto el correspondiente al término independiente, el sistema es INCOMPATIBLE ( No tiene solución). [ h = 0, j <> 0 ] En caso contrario es sistema es COMPATIBLE (Tiene solución) y se distinguen dos casos: Si el número de filas no nulas en la matriz triangular coincide con el número de incógnitas, el sistema es DETERMINADO. ( Tiene UNA única solución ) Si el número de filas no nulas en la matriz triangular es menor que el número de incógnitas, el sistema es INDETERMINADO. ( Tiene INFINITAS soluciones )
4
@ Angel Prieto BenitoApuntes 2º Bachillerato C.S.4 Ejemplo_1 Seaax + y + z = 3a113 x + ay + z = 3 A/B =1a13 x + y + az = 311a3 Al aplicar Gauss en la matriz A/B queda 11/a1/a 3/a11/a1/a3/a A/B = 1a1 3 0a-1/a1-1/a3-3/a 11a 301-1/aa-1/a3-3/a 11/a1/a3/a a 1 1 3 0a-1/a1-1/a3-3/a 0 (a+1)(a-1) a-1 3(a-1) 01-1/aa-1/a3-3/a 0 a-1 (a+1)(a-1) 3(a-1) a 113a 1 1 3 0 0-a(a-1)(a+2)-3.a(a-1) 0 1 a+1 3 0 a-1(a+1)(a-1)3(a-1) 0 0 a+2 3
5
@ Angel Prieto BenitoApuntes 2º Bachillerato C.S.5... Ejemplo Discusión: a 1 1 3 0 1 a+1 3 0 0 a+2 3 Si a+2 = 0 el sistema es incompatible, pues 3<>0 Si a+2 = 0 a = -2 Si a <> -2 el sistema es compatible. Si a = 1 Las tres filas son idénticas. Por tanto el rango de A es igual al rango de A/B = 1 El sistema es compatible e indeterminado. Si a <>1 y a <> -2 El sistema es compatible y determinado, pues ran(a)=ran(A/B) = n = 3
6
@ Angel Prieto BenitoApuntes 2º Bachillerato C.S.6 Resolución_1 Para a <> -2 a 1 1 3 0 1 a+1 3 0 0 a+2 3 Por Gauss: (a+2).z = 3 z = 3 / (a+2) y+ (a+1).3/(a+2) = 3 y = 3 – 3(a+1)/(a+2) = 3/(a+2) a.x + y + z = 3 x = [3 – 3/(a+2) – 3/(a+2)] / a = 3.a/a = 3 Para a = 1 x = 3 – y – z Si a <>1 y a <> -2 Idem para a <> -2
7
@ Angel Prieto BenitoApuntes 2º Bachillerato C.S.7 Ejemplo_2 Seax + y + z = 31113 x + 2y – 3z = 512- 35 2x + 3y – 2z = 8 23- 28 y – 4z = b 01- 4b Al aplicar Gauss en la matriz A/B queda 11131113 A/B = 01-42 01-42 01-4 201-4b 0 1 -4 b0000 1113 A/B = 01-42 Caso 1: b-2 = 0 b=2 000 b-2Caso 2: b-2 <> 0 b<>2 0 0 0 0
8
@ Angel Prieto BenitoApuntes 2º Bachillerato C.S.8 Resolución_2 Para b = 2 Ran (A)=2, ran(A/B) =2, n= 3 Sistema compatible e indeterminado. x + y + z = 3 y – 4z = 2 Por Gauss: y = 2 + 4.z x = 3 – z – y = 3 – z – (2 + 4z) = 1 – 5.z Para b <> 2 Ran (A)=2, ran(A/B) =3 Sistema incompatible.
9
@ Angel Prieto BenitoApuntes 2º Bachillerato C.S.9 Ejemplo_3 Seax + y + z = 31113 x + 2y – az = 512- a5 2x + 3y – 2z = b 23- 2b Al aplicar Gauss en la matriz A/B queda 11131113 A/B = 01-a-12 01-a-12 01-4 b-600a-3b-8 Caso 1:Si (a – 3) = 0 y (b – 8) <> 0 Sistema incompatible Si a = 3 y b <> 8 Sistema incompatible Caso 2:Si a = 3 y b = 8 Sistema incompatible indeterm. Caso 3:Si a <> 3 y b <> 8 Sistema compatible y deter. Caso 4:Si a <> 3 y b = 8 Sistema incompatible y deter.
10
@ Angel Prieto BenitoApuntes 2º Bachillerato C.S.10 Resolución_3 Caso 1: Si a = 3 y b <> 8 Sistema incompatible No admite solución. Caso 2: Si a = 3 y b = 8 Sistema incompatible indeterm. x + y + z = 3La tercera fila es suma de las otras x + 2y – 3z = 5 2x + 3y – 2z = 8 La tercera fila es suma de las otras x + y = 3 – z x + 2y = 5 + 3.z Por Reducción: y = 2 + 4.z x + ( 2 + 4.z ) = 3 – z x = 1 – 5.z Caso 3:Si a <> 3 y b <> 8 Sistema compatible y deter. Se aplicaría Cramer. Caso 4:Si a <> 3 y b = 8 Sistema incompatible y deter. Se aplicaría Cramer
11
@ Angel Prieto BenitoApuntes 2º Bachillerato C.S.11 Resolución_3 Caso 3:Si a <> 3 y b <> 8 Sistema compatible y deter. El sistema equivalente obtenido mediante Gauss es: x + y + z = 3 y – ( a + 1).z = 2 (a – 3).z = b – 8 Resolviéndolo: z = (b – 8) / (a – 3) y = 2 + (a+1).(b – 8)/ (a – 3) x = 3 – y – z x = 1 – (a+1).(b – 8)/ (a – 3) – (b – 8) / (a – 3) Caso 4:Si a <> 3 y b = 8 Sistema incompatible y deter. El sistema equivalente obtenido mediante Gauss es: x + y + z = 3 y – ( a + 1).z = 2 (a – 3).z = 0 Resolviéndolo: z = 0 / (a – 3) = 0 y = 2 + (a+1).0 = 2 x = 3 – y – z x = 3 – 2 – 0 = 1
Presentaciones similares
© 2024 SlidePlayer.es Inc.
All rights reserved.