Descargar la presentación
La descarga está en progreso. Por favor, espere
1
Fundamentos Matemáticos
Semana 6 - Clase 1 Plano cartesiano Distancia entre dos puntos y punto medio. Pendiente y ecuación de la recta.
2
91: es la longitud (unidades a la derecha o a la izquierda)
Las noticias nos proporcionan información sobre el huracán Claudius. El huracán se encuentra cerca de la intersección de la línea vertical que indica los 91o de longitud y la línea horizontal que señala los 25o de latitud. Este punto se puede identificar asignándole un par ordenado de números, conocidos como coordenadas, que muestran primero la longitud y después la latitud. De este modo, el huracán Claudius tendría las coordenadas: (91; 25). 91: es la longitud (unidades a la derecha o a la izquierda) 25: es la latitud (unidades hacia arriba o hacia abajo)
3
. . . . . a - I II Sistema coordenado rectangular Y P(a,b) b X IV III
3 2 1 -1 -2 -3 b a - . ( - , + ) I . ( + , + ) II X . ( - , - ) . ( + , - ) IV III a: abscisa de P b: ordenada de P
4
Ejemplo Ubique cada uno de los puntos siguientes en el plano cartesiano: A(0; -2), B(10; 0), C(3; -2); D( 3 ; 5), E(-1,5; 2)
5
Ejemplo: Si a y b son números reales tales que: a>0 y b<0, determine a que cuadrante pertenecen los siguientes puntos: P (a; b) Q (b; -a) R (-a; a) S (-a;-b)
6
Distancia entre dos puntos
x y . P1 P2 y1 y2 d(P1, P2) = |y1 - y2| a
7
Ejemplo: Determinar la distancia entre el punto F = ( 2 ; 5 ) y el punto M = ( 2 ; - 3 )
8
DISTANCIA ENTRE DOS PUNTOS
x y . P P2 b x x2 d(P1, P2) = | x1 - x2 |
9
Ejemplo: Determinar la distancia entre el punto
P = ( 3 ; 17 ) y el punto Q = ( 17 ;17)
10
Distancia entre dos puntos
x y . P1 P2 x x2 y2 y1 |y2 - y1 | |x2 - x1 | d(P1, P2) =
11
Ejemplo: Determinar la distancia entre el punto M = ( 4,7 ; - 5,2 ) y el punto F = ( - 1,3 ; 2,8 )
12
Fórmula de punto medio de un segmento
x y P1(x1,y1) P2(x2,y2) . M(x,y) x x2 x x1 + x2 2 M = ( , ) y1 + y2
13
Ejemplo: ( 2 ; 7 ) y ( - 2 ; 4 ) ( - 3,14 ; 1,42 ) y ( 3,14 ; - 1,42 )
Determinar el punto medio de los siguientes segmentos: ( 2 ; 7 ) y ( - 2 ; 4 ) ( - 3,14 ; 1,42 ) y ( 3,14 ; - 1,42 ) ( 0,75 ; 1,72 ) y ( 0,25 ; - 6 )
14
¿Qué significan estas señales de tránsito?
15
Pendiente de una recta l
x y ¿Cuál de las rectas está más inclinada? ¿Cómo medimos esa inclinación? L1 L2
16
La pendiente m de la recta l es:
Cambio en y y Cambio en x x m = =
17
Cálculo de la pendiente de una recta
Sea l una recta no vertical que pasa por los puntos P1(x1, y1) y P2(x2, y2). y2 - y1 x2 - x1 m =
18
Cálculo de la pendiente de una recta
y2 - y1 x2 - x1 m = x y P2(x2, y2) y=y2 - y1 P1(x1, y1) x=x2 - x1
19
Ejemplos Ubique los puntos en el plano y determine la pendiente de estos segmentos: A(-6; 1) y B(1; 2) C(-1; 4) y D(3; 1) E(4; 2) y F(6; 2) G(2; 1) y H(2; -3)
20
mCD = -3/4 mAB = 1/7 mEF = 0 mGH = ¿?
21
Conclusiones Si m>0 la recta l es creciente
Si m<0 la recta l es decreciente Toda recta horizontal tiene m = 0 Las rectas verticales no tienen pendiente definida.
22
Ecuación de la recta 1. y - y1 = m(x - x1) (x1, y1)
La ecuación de la recta de pendiente m, y punto de paso (x1, y1) es: X Y y - y1 = m(x - x1) (x1, y1)
23
Ecuación de la recta 2. y = mx + b b
La gráfica de una recta de pendiente m y ordenada en el origen b, es: X Y b y = mx + b
24
Ecuación de la recta 3. ECUACIÓN GENERAL DE LA RECTA
La gráfica de una ecuación lineal: Ax + By = C, es una recta, y recíprocamente, toda recta es la gráfica de una ecuación lineal: Ax + By = C
25
Rectas paralelas Dos rectas no verticales l1 y l2 cuyas pendientes son m1 y m2 , son paralelas (l1 // l2) si y sólo si tienen la misma pendiente. Es decir: m1 = m2
26
Rectas perpendiculares
Dos rectas no verticales l1 y l2 cuyas pendientes son m1 y m2 , son perpendiculares (l1 l2) si y sólo si el producto de sus pendientes es -1. Es decir: m1 . m2 = -1
27
recta recta // ecuación horizontal al eje X y = b
vertical al eje Y x = a
28
Determinar la ecuación de las rectas bajo las siguientes condiciones:
A. Conociendo dos puntos de paso. 1. A (-2,4) ; B(3; 7) 2. A(-4;-6) ; B(6; 8) B. Conociendo un punto y su pendiente. 1. A(5, -3) y m = -2 2. A(-1, 8) y m = 3
29
Grafica de una recta Graficar las rectas determinadas anteriormente Sugerencia: Encontrar los puntos de intersección con los ejes coordenados y unirlos.
30
Interceptos con los ejes
Los puntos de intersección de la gráfica de una ecuación con los ejes coordenados X e Y son: Con eje X: (a, 0) Se obtiene haciendo y = 0 Con eje Y: (0, b) Se obtiene haciendo x = 0
31
Ejemplo: Dibujar las siguientes gráficas dando los interceptos con los ejes
32
Tarea (¡¡recuerden este jueves es el CC4!!)
Ej. I y II Pág. 87. *Revisaremos el jueves la PC2
Presentaciones similares
© 2025 SlidePlayer.es Inc.
All rights reserved.