La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

AMPLIFICADORES OPERACIONALES

Presentaciones similares


Presentación del tema: "AMPLIFICADORES OPERACIONALES"— Transcripción de la presentación:

1 AMPLIFICADORES OPERACIONALES
simbolo de un amp-op

2 Características Ideales del Amp. Op. Alta impedancia de entrada
Baja impedancia de salida Ancho de banda infinito Ganancia infinita Definición: A = Ganancia en lazo abierto Normalmente esta ganancia está sobre 104 Como VO=AVi donde Vi = V1-V2 y si A  implica que Vi  0 (cortocircuito virtual) Configuraciones: Con inversión de fase Sin inversión de fase De modo diferencial

3 AMPLIFICADOR OPERACIONAL INVERSOR
Calculo de ganancia con inversion de fase

4 CÁLCULO DE GANANCIA EN UN AMP. OP. INVERSOR
Ganacia con inversion de fase

5 TENSIÓN DE SALIDA EN UN AMP. OP. INVERSOR
(formas de onda en secuencia de fase) Diagrama fasorial de amp con inversion

6 CÁLCULO DE GANANCIA EN UN AMP. OP. NO INVERSOR
Ganancia sin inversion de fase

7 CÁLCULO DE GANANCIA EN UN AMP. OP. NO INVERSOR
Si la corriente de carga es igual a cero, se puede aplicar un divisor de tensión

8 TENSIÓN DE SALIDA EN UN AMP. OP. NO INVERSOR
(formas de onda en secuencia de fase) Diagrama fasorial de amp sin inversion

9 FUENTE CON TIERRA FLOTANTE
Polarizacion simple y con fuente dual o tierra flotante

10 RECTIFICACIÓN DE MEDIA ONDA
Rectificacion media onda

11 RECTIFICACIÓN DE ONDA COMPLETA
CIRCUITO PUENTE RECTIFICADOR Rectificacion onda completa

12 RECTIFICACIÓN DE ONDA COMPLETA
RECTIFICADOR CON TRANSFORMADOR CON PUNTO MEDIO

13 SEMICICLO POSITIVO (conduce D1 ; D2 abierto)
RECTIFICADOR CON TRANSFORMADOR CON PUNTO MEDIO SEMICICLO POSITIVO (conduce D1 ; D2 abierto)

14 SEMICICLO NEGATIVO (conduce D2 ; D1 abierto)
RECTIFICADOR CON TRANSFORMADOR CON PUNTO MEDIO SEMICICLO NEGATIVO (conduce D2 ; D1 abierto) Tarea

15 FUENTE DE TENSIÓN DUAL (doble polaridad)

16 FUENTE DE TENSIÓN DUAL (doble polaridad)
SIMBOLOGÍA

17 SEÑALES “ALTERNA” Y “CONTINUA PULSANTE”
Onda alterna pura y onda continua pulsante

18 RECTIFICACIÓN ONDA COMPLETA Y FILTRADO
Voltaje de riple

19 CONDUCCIÓN DE DIODOS EN UNA FUENTE DUAL Semiciclo positivo
No se lo q es

20 CONDUCCIÓN DE DIODOS EN UNA FUENTE DUAL Semiciclo negativo

21 FUENTE DE TENSIÓN DUAL (doble polaridad)
Rectificacion inda completa con doble polaridad

22 FUENTE DE TENSIÓN DUAL CON FILTRADO (doble polaridad)
Fuente dual

23 LOS VALORES MÁXIMO DE LAS TENSIONES DE SALIDA EN UN AMP. OP. IDEAL
SON +V Y -V , PERO EN LA PRÁCTICA NUNCA SE LLEGA A ESOS VALORES, SINO UN PAR DE VOLTS MENOS. Ejemplo: Si se alimenta un Amp. Op. con ±15 volts, la tensión peak máxima de salida será aproximadamente de +13 y -13 volts Señal recortada

24 POLARIZACIÓN DE UN AMP. OP. Amp. Op. Inversor
Inversor sin tierra flotante (recortada) SI EL AMPLIFICADOR OPERACIONAL ESTA ALIMENTADO SÓLO CON UNA FUENTE, LA SEÑAL DE SALIDA SALDRÁ DISTORSIONADA (SE ELIMINA EL SEMICICLO NEGATIVO, YA QUE NO EXISTE ALIMENTACIÓN NEGATIVA)

25 POLARIZACIÓN DE UN AMP. OP. Amp. Op. inversor
Amplificador inversor sin tierra flotante

26 POLARIZACIÓN DE UN AMP. OP. Amp. Op. No inversor
No inversor sin tierra flotante SI EL AMPLIFICADOR OPERACIONAL ESTA ALIMENTADO SÓLO CON UNA FUENTE, LA SEÑAL DE SALIDA SALDRÁ DISTORSIONADA (SE ELIMINA EL SEMICICLO NEGATIVO, YA QUE NO EXISTE ALIMENTACIÓN NEGATIVA)

27 POLARIZACIÓN DE UN AMP. OP. Amp. Op. No inversor
No inversor sin tierra flotante sin recorte

28 SEÑAL DE SALIDA ANTES DEL CONDENSADOR Y DESPUÉS DEL CONDENSADOR.
Con y sin condensador en la salida

29 AMPLIFICADOR OPERACIONAL LM741
Patas del 741

30 AMPLIFICADOR OPERACIONAL OP07CP

31 AJUSTE INTERNO DE LA TENSIÓN DE OFFSET
PARA EL AMP. OP. LM741. Ajuste interno se offset

32 AJUSTE INTERNO DE LA TENSIÓN DE OFFSET PARA EL AMP. OP. OP07CP

33 AJUSTE UNIVERSAL DE LA TENSIÓN DE OFFSET
PARA AMPLIFICADORES OPERACIONALES. Ajuste externo se offset en un inversor AMPLIFICADOR OPERACIONAL INVERSOR

34 AJUSTE UNIVERSAL DE LA TENSIÓN DE OFFSET
PARA AMPLIFICADORES OPERACIONALES. Ajuste externo se offset en un no inversor AMPLIFICADOR OPERACIONAL NO INVERSOR

35 FUNCIÓN DE TRANSFERENCIA AMPLIFICADOR OPERACIONAL NO INVERSOR
GANANCIA UNITARIA. CON TIERRA FLOTANTE Funcion de tranferencia y circuito de amp no inversor con gan 2

36 FUNCIÓN DE TRANSFERENCIA AMPLIFICADOR OPERACIONAL NO INVERSOR
reflejo

37 FUNCIÓN DE TRANSFERENCIA AMPLIFICADOR OPERACIONAL INVERSOR
Func de trans de amp inv con av 1

38 FUNCIÓN DE TRANSFERENCIA AMPLIFICADOR OPERACIONAL NO INVERSOR
GANANCIA UNITARIA. SIN TIERRA FLOTANTE Funcion de trans

39 FUNCIÓN DE TRANSFERENCIA AMPLIFICADOR OPERACIONAL NO INVERSOR
GANANCIA UNITARIA. SIN TIERRA FLOTANTE Func de trans

40 PARA EVITAR EL RECORTE DEL SEMICICLO NEGATIVO,
ES POSIBLE “CORRER” LA FUNCIÓN DE TRANSFERENCIA HACIA EL LADO IZQUIERDO.

41 FUNCIÓN DE TRANSFERENCIA AUMENTO DE LA GANANCIA

42 FUNCIÓN DE TRANSFERENCIA DE UN AMP. OP. SIN LAZO DE REALIMENTACIÓN
COMPARADORES FUNCIÓN DE TRANSFERENCIA DE UN AMP. OP. SIN LAZO DE REALIMENTACIÓN (Ganancia del Amp. Op. muy grande) Fuuncion de transferencia de amp con av infinita

43 FUNCIÓN DE TRANSFERENCIA AMPLIFICADOR OPERACIONAL INVERSOR
GANANCIA EN LAZO ABIERTO SIN TIERRA FLOTANTE. TENSIÓN DE REFERENCIA = 0 Comparadores

44 FUNCIÓN DE TRANSFERENCIA AMPLIFICADOR OPERACIONAL INVERSOR
GANANCIA EN LAZO ABIERTO CON TIERRA FLOTANTE TENSIÓN DE REFERENCIA = 0 Comparadores

45 FUNCIÓN DE TRANSFERENCIA AMPLIFICADOR OPERACIONAL INVERSOR
GANANCIA EN LAZO ABIERTO SIN TIERRA FLOTANTE TENSIÓN DE REFERENCIA  0 Comparadores

46 FUNCIÓN DE TRANSFERENCIA AMPLIFICADOR OPERACIONAL INVERSOR
GANANCIA EN LAZO ABIERTO CON TIERRA FLOTANTE TENSIÓN DE REFERENCIA  0 Comparadores

47 FUNCIÓN DE TRANSFERENCIA AMPLIFICADOR OPERACIONAL INVERSOR
GANANCIA EN LAZO ABIERTO SIN TIERRA FLOTANTE TENSIÓN DE REFERENCIA  0 Comparadores

48 FUNCIÓN DE TRANSFERENCIA AMPLIFICADOR OPERACIONAL INVERSOR
GANANCIA EN LAZO ABIERTO CON TIERRA FLOTANTE TENSIÓN DE REFERENCIA  0 Comparadores

49 POLARIZACIÓN DE UN LED (light emitter diode) led

50 Ej. de un Amp. Op. como comparador
El LED se encenderá cuando la tensión de entrada (A) se haga = 4v Circuito q enciende led a 4vref

51 EL AMP. OP. COMO “DETECTOR DE CRUCE POR CERO”.
Detector de cruce por 0 + circuito

52 ¿ Se puede detectar el cruce por cero, si la
señal de entrada no está rectificada en onda completa ? Detector de cruce por 0

53 CARGA DE UN CONDENSADOR CUANDO SE LE APLICA UN ESCALÓN +V
Dif de tau en un circuito

54 CIRCUITO QUE “APAGA” UN LED A UN TIEMPO DADO
Circuito q enciende un led despues de tau

55 EL AMP. OP. COMO “SUMADOR INVERSOR”
Amp sumador DEMOSTRAR QUE:

56 EL AMP. OP. COMO “SUMADOR NO INVERSOR”
DEMOSTRAR QUE:

57 EL AMP. OP. EN INSTRUMENTACIÓN
Amp de instrumentecion DEMOSTRAR QUE:

58 LAS RESISTENCIAS PUEDEN SER REEMPLAZADA
PUENTE DE WHEASTON Puente balanceado de wheaston LAS RESISTENCIAS PUEDEN SER REEMPLAZADA POR TRANSDUCTORES TALES COMO: UN NTC O UN PTC O UN STRAIN GAUGE U OTROS.

59 EL AMPLIFICADOR OPERACIONAL COMO “COMPARADOR CON HISTÉRESIS”
Couling y amp op

60 FUNCIÓN DE TRANSFERENCIA EL AMPLIFICADOR OPERACIONAL COMO
“COMPARADOR CON HISTÉRESIS” Couling y amp op

61 OSCILADOR DE RELAJACIÓN GENERADOR DE ONDA CUADRADA Y TRIANGULAR
Oscilador de relajacion

62 CONTROL DE ÁNGULO DE DISPARO DE 180O
Circuito control de………………………………. DIBUJAR EN SECUENCIA DE FASE V1; V2; V3; VO

63 AMPLIFICADORES OPERACIONALES CON DIODOS
¤ RECTIFICADORES DE PRECISIÓN ¤ OBJETIVOS DE APRENDIZAJE Al terminar la lectura de este capítulo sobre amplificadores operacionales con diodos, será capaz de: Dibujar el circuito de un rectificador de media onda (o lineal) de precisión. Mostrar el flujo de corriente y los voltajes de circuito en un rectificador de media onda de precisión, tanto para entradas positivas como negativas. Hacer lo mismo para el caso de rectificadores de onda completa de precisión. Explicar el funcionamiento de un circuito detector de picos. Añadir un capacitor de media onda de precisión y de esta manera construir un circuito convertidor de ca a cd (valor medio). Explicar el funcionamiento de los circuitos de zona muerta. Dibujar circuitos recortadores de precisión y explicar cómo funcionan. Amplificadores operacionales con diodos. Mencionar, por lo menos, cinco áreas en las que se utilizan los rectificadores de precisión.¤

64 LA PRINCIPAL LIMITACIÓN DE LOS DIODOS DE SILICIO COMUNES ES QUE NO SON CAPACES DE RECTIFICAR VOLTAJES POR DEBAJO DE 0,6 VOLT

65 RECTIFICADORES DE PRECISIÓN
Entre las aplicaciones de los rectificadores lineales de media onda y de onda completa de precisión figuran: Detección de señales de amplitud modulada. Circuitos de zona muerta. Circuitos recortadores o de límite preciso. Interruptores de corriente. Formadores de onda. Indicadores de valor pico. Circuitos de muestreo y retención. Circuitos de valor absoluto Circuitos promediadores Detectores de polaridad de señal Convertidores de ca a cd Con frecuencia, las funciones anteriores se utilizan en el acondicionamiento de señales, antes de alimentarlas, a la entrada de un microcontrolador.

66 RECTIFICADOR INVERSOR DE MEDIA ONDA LINEAL
CON SALIDA POSITIVA ANÁLISIS DEL SEMICICLO POSITIVO DE LA SEÑAL DE ENTRADA Rectificador inversor de media onda lineal con salida positiva LA PRINCIPAL LIMITACIÓN DE LOS DIODOS DE SILICIO COMUNES ES QUE NO SON CAPACES DE RECTIFICAR VOLTAJES POR DEBAJO DE 0,6 VOLT

67 RECTIFICADOR INVERSOR DE MEDIA ONDA LINEAL CON SALIDA POSITIVA
ANÁLISIS DEL SEMICICLO NEGATIVO DE LA SEÑAL DE ENTRADA Rectificador inversor de media onda lineal con salida positiva

68 RECTIFICADOR INVERSOR DE MEDIA ONDA LINEAL CON SALIDA POSITIVA
Características de entrada y salida de un rectificador de media onda inversor ideal con salida positiva. CARACTERÍSTICA DE ENTRADA, SALIDA Y TRANSFERENCIA DE UN RECTIFICADOR DE MEDIA ONDA INVERSOR “IDEAL” CON SALIDA POSITIVA.

69 RECTIFICADOR INVERSOR DE MEDIA ONDA LINEAL CON SALIDA POSITIVA
Funcion de transferencia rectificador de media onda inversor ideal con salida positiva. CARACTERÍSTICA DE ENTRADA, SALIDA Y TRANSFERENCIA DE UN RECTIFICADOR DE MEDIA ONDA INVERSOR “IDEAL” CON SALIDA POSITIVA.

70 RECTIFICADOR INVERSOR DE MEDIA ONDA LINEAL CON SALIDA NEGATIVA

71 RECTIFICADOR INVERSOR DE MEDIA ONDA LINEAL CON SALIDA NEGATIVA
Rectificador inversor de media onda lineal con salida negativa (func. de trans.)

72 SEPARADOR DE POLARIDAD DE SEÑAL
Separador de polaridod de señal

73 SEPARADOR DE POLARIDAD DE SEÑAL
Separador de polaridod de señal

74 CARACTERÍSTICA DE ENTRADA, SALIDA Y TRANSFERENCIA DEL SEPARADOR
DE POLARIDAD DE SEÑAL. Voltajes de entrada y salida del separador de polaridad

75 CARACTERÍSTICA DE ENTRADA, SALIDA Y TRANSFERENCIA DEL SEPARADOR
DE POLARIDAD DE SEÑAL. Voltajes de entrada y salida del separador de polaridad

76 RECTIFICADORES DE PRECISIÓN: CIRCUITO DE VALOR ABSOLUTO
EL RECTIFICADOR DE ONDA COMPLETA DE PRECISIÓN RECTIFICA EN SU TOTALIDAD A LOS VOLTAJES DE ENTRADA, INCLUSO AQUELLOS CUYOS VOLORES SON INFERIORES AL VOLTAJE DE UMBRAL DEL DIODO

77 RECTIFICADORES DE PRECISIÓN: CIRCUITO DE VALOR ABSOLUTO
Vo y simbologia de un rectificador de presicion valor absoluto EL RECTIFICADOR DE ONDA COMPLETA DE PRECISIÓN RECTIFICA EN SU TOTALIDAD A LOS VOLTAJES DE ENTRADA, INCLUSO AQUELLOS CUYOS VOLORES SON INFERIORES AL VOLTAJE DE UMBRAL DEL DIODO

78 CIRCUITO DE VALOR ABSOLUTO O RECTIFICADOR DE ONDA COMPLETA DE PRECISIÓN, VO = |Ei |

79 CIRCUITO DE VALOR ABSOLUTO O RECTIFICADOR DE ONDA COMPLETA DE PRECISIÓN, VO = |Ei |

80 CIRCUITO DE VALOR ABSOLUTO O RECTIFICADOR DE ONDA COMPLETA DE PRECISIÓN, VO = |Ei |

81 RECTIFICADOR DE PRECISIÓN DE ONDA COMPLETA DE ALTA IMPEDANCIA
Niveles de voltaje para entradas positivas: V0 = +Ei para todos los valores positivos de Ei.

82 RECTIFICADOR DE PRECISIÓN DE ONDA COMPLETA DE ALTA IMPEDANCIA
Niveles de voltaje para entradas negativas: V0 = -(-Ei) = | Ei |.

83 RECTIFICADOR DE PRECISIÓN DE ONDA COMPLETA DE ALTA IMPEDANCIA
Circuito seguidor de picos positivos y retenedor o detector de pico. CIRCUITO SEGUIDOR DE PEAK POSITIVOS Y RETENEDOR O DETECTOR DE PEAK LOS AMPLIFICADORES OPERACIONALES UTLIZADOS SON DEL TIPO BIFET (también se puede utilizar el OP-77 para la mayoría de las aplicaciones)

84 RECTIFICADOR DE PRECISIÓN DE ONDA COMPLETA DE ALTA IMPEDANCIA
Circuito seguidor de picos positivos y retenedor o detector de pico. CIRCUITO SEGUIDOR DE PEAK POSITIVOS Y RETENEDOR O DETECTOR DE PEAK LOS AMPLIFICADORES OPERACIONALES UTLIZADOS SON DEL TIPO BIFET (también se puede utilizar el OP-77 para la mayoría de las aplicaciones)

85 FORMAS DE ONDAS CORRESPONDIENTES AL DETECTOR POSITIVO DE PEAK
Formas de las ondas correspondientes al detector positivo de la dia 80

86 VALOR ABOLUTO MEDIO DE ONDAS SENOIDALES ALTERNAS
FORMAS DE ONDA - RECTIFICADOR DE PRECISIÓN DE ONDA COMPLETA DE ALTA IMPEDANCIA VALOR ABOLUTO MEDIO DE ONDAS SENOIDALES ALTERNAS

87 VALOR ABOLUTO MEDIO DE ONDAS TRIANGULARES ALTERNAS
FORMAS DE ONDA - RECTIFICADOR DE PRECISIÓN DE ONDA COMPLETA DE ALTA IMPEDANCIA VALOR ABOLUTO MEDIO DE ONDAS TRIANGULARES ALTERNAS

88 VALOR ABOLUTO MEDIO DE ONDAS CUADRADAS ALTERNAS
FORMAS DE ONDA - RECTIFICADOR DE PRECISIÓN DE ONDA COMPLETA DE ALTA IMPEDANCIA VALOR ABOLUTO MEDIO DE ONDAS CUADRADAS ALTERNAS

89 RECTIFICADOR DE PRECISIÓN CON ENTRADAS SUMADORES
Rectificador de precisión con entradas sumadoras. ESTE AMPLIFICADOR DE VALOR ABSOLUTO TIENE AMBOS NODOS DE SUMA AL POTENCIAL DE TIERRA PARA UNA U OTRA POLARIDAD DE VOLTAJE DE ENTRADA R = 20 K

90 RECTIFICADOR DE PRECISIÓN CON ENTRADAS SUMADORES
Rectificador de presicion con entradas sumadoras ESTE AMPLIFICADOR DE VALOR ABSOLUTO TIENE AMBOS NODOS DE SUMA AL POTENCIAL DE TIERRA PARA UNA U OTRA POLARIDAD DE VOLTAJE DE ENTRADA R = 20 K

91 CONVERTIDOR DE CORRIENTE ALTERNA Y CORRIENTE CONTINUA
Rectificador de presicion con entradas sumadoras PARA CONSTRUIR ESTE CONVERTIDOR DE CA A CD O AMPLIFICADOR DE VALOR MEDIO ABSOLUTO, SE AÑADE UN CAPACITOR

92 CIRCUITOS DE ZONA MUERTA
Mediante los circuitos comparadores es posible saber si una señal se encuentra por abajo o por arriba de un voltaje de referencia determinado. En contraste con el comparador , el circuito de zona muerta permite saber en cuánto se encuentra la señal por debajo o por arriba del voltaje de referencia. Circuito de zona muerta con salida negativa

93 CIRCUITOS DE ZONA MUERTA
Mediante los circuitos comparadores es posible saber si una señal se encuentra por abajo o por arriba de un voltaje de referencia determinado. En contraste con el comparador , el circuito de zona muerta permite saber en cuánto se encuentra la señal por debajo o por arriba del voltaje de referencia. Circuito de zona muerta con salida negativa

94 CIRCUITOS DE ZONA MUERTA
Mediante los circuitos comparadores es posible saber si una señal se encuentra por abajo o por arriba de un voltaje de referencia determinado. En contraste con el comparador , el circuito de zona muerta permite saber en cuánto se encuentra la señal por debajo o por arriba del voltaje de referencia. Formas de onda ZONA MUERTA SALIDA NEGATIVA

95 CIRCUITOS DE ZONA MUERTA CON SALIDA POSITIVA
Circuito de zona muerta, salida positiva. CIRCUITO DE ZONA MUERTA, CON SALIDA BIPOLAR

96 CIRCUITOS DE ZONA MUERTA CON SALIDA POSITIVA
Circuito de zona muerta, salida positiva. CIRCUITO DE ZONA MUERTA, CON SALIDA BIPOLAR

97 CIRCUITOS DE ZONA MUERTA CON SALIDA POSITIVA
Circuito de zona muerta, con salida bipolar. CIRCUITO DE ZONA MUERTA, CON SALIDA BIPOLAR

98 RECORTADOR DE PRECISIÓN
Recortador de presicion

99 FORMAS DE ONDA EN UN RECORTADOR DE PRECISIÓN
Formas de onda del recortador de presicion

100 CONVERTIDOR DE ONDA TRIANGULAR A ONDA SENOIDAL
Convertidor de onda triangular a senoidal


Descargar ppt "AMPLIFICADORES OPERACIONALES"

Presentaciones similares


Anuncios Google