Descargar la presentación
La descarga está en progreso. Por favor, espere
Publicada poralberto gonzalez Modificado hace 7 años
1
Optativa: Razonamiento matemático y verbal Historia de las matemáticas Dr. Daniel Méndez Iturbide Dra. Margarita Cervantes Rodríguez San Pablo del Monte Tlaxcala 30 Agosto 2017
2
NUMERO BASE Cuando los hombres empezaron a contar usaron los dedos, guigarros, marcas en bastones, nudos en una cuerda y algunas otras formas para ir pasando de un número al siguiente. A medida que la cantidad crece se hace necesario un sistema de representación más práctico. En diferentes partes del mundo y en distintas épocas se llegó a la misma solución, cuando se alcanza un determinado número se hace una marca distinta que los representa a todos ellos. Este número es la base. Se sigue añadiendo unidades hasta que se vuelve a alcanzar por segunda vez el número anterior y se añade otra marca de la segunda clase. Cuando se alcanza un número determinado (que puede ser diferente del anterior constituyendo la base auxiliar) de estas unidades de segundo orden, las decenas en caso de base 10, se añade una de tercer orden y así sucesivamente.
3
BASE 10 La base que más se ha utilizado a lo largo de la Historia es 10 según todas las apariencias por ser ese el número de dedos con los que contamos. Hay alguna excepción notable como son las numeración babilónica que usaba 10 y 60 como bases y la numeración maya que usaba 20 y 5 aunque con alguna irregularidad. Desde hace 5000 años la gran mayoría de las civilizaciones han contado en unidades, decenas, centenas, millares etc. es decir de la misma forma que seguimos haciéndolo hoy. Sin embargo la forma de escribir los números ha sido muy diversa y muchos pueblos han visto impedido su avance científico por no disponer de un sistema eficaz que permitiese el cálculo. Casi todos los sistemas utilizados representan con exactitud los números enteros, aunque en algunos pueden confundirse unos números con otros, pero muchos de ellos no son capaces de representar grandes cantidades, y otros requieren tal cantidad de simbolos que los hace poco prácticos.
4
El sistema actual fue inventado por los indios y transmitido a Europa por los árabes;. Del origen indio del sistema hay pruebas documentales más que suficientes, entre ellas la opinión de Leonardo de Pisa (Fibonacci) que fue uno de los indroductores del nuevo sistema en la Europa de 1200. El gran mérito fue la introducción del concepto y símbolo del cero, lo que permite un sistema en el que sólo diez símbolos puedan representar cualquier número por grande que sea y simplificar la forma de efectuar las operaciones.
6
3000 A.C.- 2500 A.C. Los textos de matemática más antiguos que se poseen proceden de Mesopotamia, algunos textos cuneiformes tienen más de 5000 años de edad. Se inventa en China el ábaco, primer instrumento mecánico para calcular. Se inventan las tablas de multiplicar y se desarrolla el cálculo de áreas.
7
1600 A.C aprox. El Papiro de Rhind, es el principal texto matemático egipcio, fué escrito por un escriba bajo el reinado del rey hicso Ekenenre Apopi y contiene lo esencial del saber matemático de los egipcios. Entre estos, proporciona unas reglas para cálculos de adiciones y sustracciones de fracciones, ecuaciones simples de primer grado, diversos problemas de aritmética, mediciones de superficies y volumenes.Papiro de Rhind
8
550 al 450 A.C. La matemática griega es conocida gracias a un prólogo histórico escrito en el siglo V D.C. por el filósofo Proclo. Este texto nombra a los geómetras griegos de aquel período, pero sin precisar la naturaleza exacta de sus descubrimientos. Del 550 al 450 A.C. Se establece la era pitagórica. Pitágoras de Samos, personaje semilegendario creador de un gran movimiento metafísico, moral, religioso y científico. El saber geométrico de los pitagóricos estaba en la geometría elemental, donde destaca el famoso Teorema de Pitágoras, el cual fue establecido por su escuela y donde la tradición de los pitagóricos llevó a atribuirselo a su maestro. Con respecto a la aritmética el saber de los pitagóricos era enorme. Fueron los primeros en analizar la noción de número y en establecer las relaciones de correspondencia entre la aritmética y la geometría. Definieron los número primos, algunas progresiones y precisaron la teoría de las proporciones. Los pitagóricos propagaban de que todo podía expresarse por medio de números, pero luego tuvieron que aceptar que la diagonal de un cuadrado era inconmesurable con el lado del cuadrado.
9
276-194 A.C. El astrónomo Eudoxo, establece una Teoría de la Semejanza. El matemático griego Eratóstenes ideó un método con el cual pudo medir la longitud de la circunferencia de la tierra.
10
1100 Los hindúes conocen el sistema de numeración babilónica por posición y lo adaptan a la numeración decimal, creando así el sistema decimal de posición, que es nuestro sistema actual. Omar Khayyam desarrolla un método para dibujar un segmento cuya longitud fuera una raíz real positiva de un polinomio cúbico dado.
11
1642 Descartes crea la Geometría Analítica. El matemático Blaise Pascal construye la primera máquina de calcular, conocida como la Pascalina, la cual podía efectuar sumas y restas de hasta 6 cifras.
12
1817 Laplace publicó en París su Théorie analytique des probabilités donde hace un desarrollo riguroso de la teoría de la probabilidad con aplicaciones a problemas demográficos, jurídicos y explicando diversos hechos astronómicos. Bernhard Bolzano presenta un trabajo titulado "Una prueba puramente analítica del teorema que establece que entre dos valores donde se garantice un resultado opuesto, hay una raíz real de la ecuación". Dicha prueba analítica se conoce hoy como teorema de Bolzano
13
1977 Mitchell Feingenbaum descubre un modelo matemático que describe la transición del orden al caos. Los matemáticos K. Appel y W. Haken resuelven el histórico teorema de los cuatro colores con ayuda de un computador.
15
Numeración Griega
17
Sistemas de Numeración Posicionales Mucho más efectivos que los sistemas anteriores son los posicionales. En ellos la posición de una cifra nos dice si son decenas, centenas... o en general la potencia de la base correspondiente. Sólo tres culturas además de la india lograron desarrollar un sistema de este tipo. Babilonios, chinos y mayas en distintas épocas llegaron al mismo principio. La ausencia del cero impidió a los chinos un desarrollo completo hasta la introducción del mismo. Los sistemas babilónico y maya no eran prácticos para operar porque no disponían de simbolos particulares para los dígitos, usando para representarlos una acumulación del signo de la unidad y la decena. El hecho que sus bases fuese 60 y 20 respectivamente no hubiese representado en principio nigún obstáculo. Los mayas por su parte cometían una irregularidad a partir de las unidades de tercer orden, ya que detrás de las veintenas no usaban 20x20=400 sino 20x18=360 para adecuar los números al calendario, una de sus mayores preocupaciones culturales.
18
Fueron los indios antes del siglo VII los que idearon el sistema tal y como hoy lo conocemos, sin mas que un cambio en la forma en la que escribimos los nueve dígitos y el cero. Aunque con frecuencia nos referimos a nuestro sistema de numeración cómo árabe, las pruebas arqueológicas y documentales demuestran el uso del cero tanto en posiciones intermedias como finales en la India. Los árabes transmitieron esta forma de representar los números y sobre todo el cálculo asociado a ellas, aunque tardaron siglos en ser usadas y aceptadas. Una vez más se produjo una gran resistencia a algo por el mero hecho de ser nuevo o ajeno, aunque sus ventajas eran evidentes. Sin esta forma eficaz de numerar y efectuar cálculos difícilmente la ciencia hubiese podido avanzar.
19
BABILONICO
22
Ejercicio Escribir una historia basada en el surgimiento de la numeración. China Maya India Egipcia Donde incluya posible utilización. Suerte
Presentaciones similares
© 2025 SlidePlayer.es Inc.
All rights reserved.