LA ELIPSE CETis 162 Zapotlanejo Jalisco a 1 Diciembre 2011.

Slides:



Advertisements
Presentaciones similares
Generatriz Eje SUPERFICIE CÓNICA
Advertisements

TRAZADO GEOMETRICO DE CONICAS
INTRODUCCION A LA GEOMETRIA ANALITICA
CONSTRUCIONES GEOMETRICAS 5 - CÓNICAS
Traslación y composición
Lectura de Cónicas SECCIONES CÓNICAS CIRCUNFERENCIA, PARÁBOLA, ELIPSE
Parábola.
GEOMETRÍA DE LAS SUPERFICIES
Curvas Cónicas Curvas cónicas elipseparábolahipérbola
Geometría Analítica LA ELIPSE DEFINICIÓN ELIPSES A NUESTRO ALREDEDOR
Matemáticas preuniversitarias
Recursos matemáticos para física
Geometría Analítica Plana
TEMA 9 PROPORCIÓN Y ESTRUCTURAS MODULARES
Elipse.
M. en C. René Benítez López
La hipérbola Matemáticas Preuniversitarias
Colegio Santo Tomás de Villanueva
I.Sistemas de coordenadas II.Gráfica de una ecuación y lugares geométricos III.La línea recta IV.Ecuación de la circunferencia V.Transformación de coordenadas.
PARÁBOLA.
Circunferencia. Presentado por: María del Rosario Ochoa Guerrero.
La elipse ARQUITECTA LEONOR ROCHSS.
ELIPSE E HIPERBOLA.
Lugares geométricos. Las cónicas y las cuádricas
Curso de: Matemáticas de Apoyo Geometría Analítica
TRAZADO GEOMETRICO DE CONICAS
Las Secciones Cónicas.
Unidad 2: Secciones cónicas
LAS CONICAS CUANDO SE INTERCEPTA UN PLANO Y UN DOBLE CONO INVERTIDO, SEGÙN EL ÀNGULO DE CORTE, SE ORIGINA UNA SECCIÒN EN EL SÒLIDO, ESTE PUEDE SER UNA.
GEOMETRÍA ANALÍTICA DEL PLANO
GEOMETRIA ANALITICA.
Guías Modulares de Estudio MATEMATICAS III Parte A
ALUMNA: MARICELA DIAZ LABRA
Curvas cónicas (I) Circunferencia Elipse
La Elipse Durante muchos siglos se consideró que las orbitas de los planetas eran circunferenciales, con la Tierra como centro. Pero estudiando las.
La Elipse Durante muchos siglos se consideró que las orbitas de los planetas eran circunferenciales, con la Tierra como centro. Pero estudiando las.
ELIPSE: es el lugar geométrico de los puntos del plano cuya suma de distancias a dos puntos fijos es constante.
CUERPOS DE REVOLUCIÓN.
Cónicas. Secciones cónicas Circunferencia
Cónicas y Curvas Técnicas
INTRODUCCION A LA GEOMETRIA ANALITICA
CÓNICAS La circunferencia es el lugar geométrico de Puntos que equidistan de uno fijo llamado centro. La distancia de un punto cualquiera de la circunferencia.
LA PARABOLA.
Parábola.
CURVAS CÓNICAS. Generación de una superficie cónica de revolución.
República Bolivariana de Venezuela Ministerio del Poder Popular para la Defensa Universidad Nacional Experimental Politécnica de la Fuerza Armada Núcleo.
Secciones Cónicas Shirley Bromberg Raquel Valdés Versión Preliminar.
Construcción de cónicas usando sólo regla y compás
GEOMETRIA ANALITICA.
M. en C. René Benítez López
Secciones Cónicas: LA ELIPSE.
Tema 11 LA HIPÉRBOLA V y V’: Vértices LL’: Lado recto c : centro
Unidad de Operación Desconcentrada para el Distrito Federal
Ecuación de la elipse en un sistema de coordenadas reducidas (creamos un sistema con la máxima simetría posible).
La Elipse Tema 10 (h,k) k h B B’ D D’ E E’ L L’ P F’ V’ V A’ l’ c l A
Geometría Analítica.
Apuntes 1º Bachillerato CT
CÓNICAS.
LAS FIGURAS GEOMÉTRICAS
LAS SECCIONES CÓNICAS.
CURVAS PLANAS y CÓNICAS
CIRCUNFERENCIA, PARÁBOLA, ELIPSE
Valencia-Isabelica 16 de Noviembre 2008
CUERPOS GEOMETRICOS.
Apuntes de Matemáticas 3º ESO
CURVAS CÓNICAS. Generación de una superficie cónica
CENTRO REGIONAL DE EDUCACIÓN NORMAL “ DR.GONZALO AGUIRRE BELTRAN” Nombre de la Materia: Forma, Espacio y Medida Docente: Dra. Hercy Báez Cruz Alumno (s):
Recuerda. La circunferencia
L AS CÓNICAS Presentado por: Eduart enrique obando Juan Camilo muños.
CURVAS TÉCNICAS, CÍCLICAS Y CÓNICAS
Transcripción de la presentación:

LA ELIPSE CETis 162 Zapotlanejo Jalisco a 1 Diciembre 2011

3°B Informática Katia Verenice Nuño Hernández no. 38 Néstor Hugo Iñiguez Camacho no.28 Cindy Lizbeth Franco Álvarez no. 18 Ariana Aydee Álvarez Chávez no. 03 Informática 3°B

APLICACIONES DE LA ELIPSE, Y LAS MATEMATICAS Las matematicas tienen una aplicación directa en Arquitectura. Podemos imaginar que antes de poenr manos a la obra, el arquitecto tiene que comprobar que la estructura a construir es realizable, teniendo en cuenta la resistencia de los materiales que empleara, las cargas que estos tienen que soportar y, quizás también el costo económico. “TODA CREACION ARQUITECTONICA ES GEOMETRIA” desde siempre los arquitectos han aprovechado las superficies que pueden clasificarse clasicas, y las han convinado acertadamente. En nuestra epoca una nueva teoria “la de la superficies de Bezier y sus generalizaciones engendradas al principio de la decada de los 70’s en varias empresas automovilisticas y de construccion aeronautica, ayuda al arquitecto a diseñar superficies de manera arbitraria con sencilles y elegancia

CARACTERISTICAS DE LA ELIPSE La elipse como lugar geometrico, tiene una caracteristica muy particulart que la distingue de otras curvas cerradas: Cualquier punto sobre la elipse cumplira que la suma de las distancias de el a los puntos A y B debe mantenerse constante. Por esta razon, en el trazo inicial con la misma longitud de estambre fijando sus extremos en los puntos A y B, se obtuvo una elipse. De manera concreta, una elipse es una curva cerrada formada por una infinidad de puntos del plano, para los cuales la suma de sus distancias a dos puntos fijos llamados focos, se mantiene constante.

Elementos de una Elipse A los puntos A y B se les conoce como Focos y normalmente se simbolizan con las letras F y F’ Puntos: B y B’ son covertices C es el centro V y V’ son vertices Segmentos de la recta: VV’ eje mayor FF’ eje focal Longitud: 2ª Longitud 2c BB’ eje menor Longitud 2b lado recto: LR= 2 2b a

c: representa la distancia del centro a cualquiera de los dos focos. Observa la importancia de las letras a, b, c como parametro de la elipse: a: representa la distancia del centro al cual quiera de las dos vertices b: representa la distancia del centro a cualquiera de las dos covertices c: representa la distancia del centro a cualquiera de los dos focos. La relacion que guardan los tres parametros a, b, c es pitagorica. En la imagense observa que a es hipotenusa y b y c son los catetos de un triangulo, por lo que: a = b + c 2 2 2

Ejes de una elipse Constante de la elipse El eje mayor 2a, es la mayor distancia entre dos puntos adversos de la elipse. El resultado constante de la suma de las distancias de cualquier punto a los focos equivale al eje mayor. El eje menor 2b, es la menor distancia entre dos puntos adversos de la elipse. Los ejes de la elipse son perpendiculares entre si. Constante de la elipse En la figura de la derecha se muestran los dos radio vectores correspondientes a cada punto P de una elipse, los vectores que van de los focos F1 y F2 a P. Las longitudes de los segmentos correspondientes a cada uno son PF1 (color azul) y PF2 (color rojo), y en la animación se ilustra como varían para diversos puntos P de la elipse. Como establece la definición inicial de la elipse como lugar geométrico, para todos los puntos P de la elipse la suma de las longitudes de sus dos radio vectores es una una cantidad constante igual a la longitud 2a del eje mayor: PF1 + PF2 = 2a En la elipse de la imagen 2a vale 10 y se ilustra, para un conjunto selecto, de puntos cómo se cumple la definición.

*Directrices de la elipse La recta dD es una de las 2 directrices de la elipse. Cada foco F de la elipse está asociado con una recta paralela al semieje menor llamada directriz (ver ilustración de la derecha). La distancia de cualquier punto P de la elipse hasta el foco F es una fracción constante de la distancia perpendicular de ese punto P a la directriz que resulta en la igualdad: La relación entre estas dos distancias es la excentricidad de la elipse. Esta propiedad (que puede ser probada con la herramienta esferas de Dandelin) puede ser tomada como otra definición alternativa de la elipse. Una elipse es el lugar geométrico de todos los puntos de un plano para los cuales se cumple que el cociente entre sus distancias a un punto fijo –que se denomina foco– y a una recta dada –llamada directriz– permanece constante y es igual a la excentricidad de la misma. Además de la bien conocida relación , también es cierto que , también es útil la fórmula . Aunque en la figura solo se dibujó la directriz del foco derecho, existe otra directriz para el foco izquierdo cuya distancia del centro O es -d, la cual además es paralela a la directriz anterior.

Directrices de la elipse Cada foco F de la elipse está asociado con una recta paralela al semieje menor llamada directriz . La distancia de cualquier punto P de la elipse hasta el foco F es una fracción constante de la distancia perpendicular de ese punto P a la directriz que resulta en la igualdad: La relación entre estas dos distancias es la excentricidad  de la elipse. Esta propiedad (que puede ser probada con la herramienta esferas de Dandelin) puede ser tomada como otra definición alternativa de la elipse.

Una elipse es el lugar geométrico de todos los puntos de un plano para los cuales se cumple que el cociente entre sus distancias a un punto fijo –que se denomina foco– y a una recta dada –llamada directriz– permanece constante y es igual a la excentricidad de la misma Además de la bien conocida relación  también es cierto que   también es útil la fórmula   Aunque en la figura solo se dibujó la directriz del foco derecho, existe otra directriz para el foco izquierdo cuya distancia del centro O es -d, la cual además es paralela a la directriz anterior. Aunque en la figura solo se dibujó la directriz del foco derecho, existe otra directriz para el foco izquierdo cuya distancia del centro O es -d, la cual además es paralela a la directriz anterior.

Área interior de una elipse El área de la superficie interior de una elipse es: Siendo a y b los semiejes.

Longitud de una elipse El cálculo del perímetro de una elipse requiere del cálculo de integrales elípticas de segunda especie. Sin embargo, el matemático Ramanujan ideó una ecuación más simple que se aproxima razonablemente a la longitud de la elipse, pero en grado menor que la obtenida mediante integrales elípticas. Ramanujan, en su fórmula, entre otros valores utiliza el “semieje mayor” y el “semieje menor”. Ecuación de la longitud de una elipse:

La elipse como cónica La elipse surge de la intersección de una superficie cónica con un plano, de tal manera que la inclinación del plano no supere la inclinación de la recta generatriz del cono, consiguiendo así que la intersección sea una curva cerrada. En otro caso el corte podría ser una hipérbola o una parábola. Es por ello que a todas estas figuras bidimensionales se las llama secciones cónicas o simplemente cónicas.

La elipse como hipotrocoide La elipse es un caso particular de hipotrocoide, donde R = 2r, siendo R el radio de la circunferencia directriz, y r el radio de la circunferencia generatriz. En una curva hipotrocoide, la circunferencia que contiene al punto generatriz, gira tangencialmente por el interior de la circunferencia directriz.

Construcción paramétrica de una elipse Se dibujan dos circunferencias concéntricas cuyos diámetros equivalen a la medida de los ejes ortogonales de la futura elipse. Si trazamos segmentos palalelos a los ejes principales X e Y, partiendo del extremo de los radios alineados, la intersección de dichos segmentos son puntos de la elipse.

Anamorfosis de una circunferencia en una elipse Determinada trasformación de la circunferencia (al deformar ortogonalmente el plano cartesiano asociado a ella), se denomina anamorfosis. Se corresponde con una perspectiva especial. El término anamorfosis proviene del idioma griego y significa trasformar. Esta circunferencia se transforma en una elipse mediante una anamorfosis, donde el eje Y se ha contraído y el X se ha dilatado. Una circunferencia en un plano cartesiano no deformado

*Elipses semejantes Se dice que dos figuras son semejantes cuando se diferencian sólo en el tamaño (pero no en la forma), de tal manera que multiplicando todas las longitudes por un factor dado, se pasa de una figura a la otra. Hay un teorema de utilidad en Física5 acerca de la intersección de una recta con dos elipses semejantes y concéntricas. Teorema: Si la intersección de una recta con la corona comprendida entre dos elipses semejantes con el mismo centro y ejes correspondientes colineales consta de dos segmentos, entonces éstos tienen igual longitud. Explicación: El teorema es cierto, por simetría, en el caso particular en que las elipses dadas sean dos circunferencias concéntricas. Contrayendo o dilatando uniformemente una de las direcciones coordenadas, mediante anamorfosis, podemos transformar cualquier caso en este caso particular, pues todos los segmentos con la misma pendiente cambian su longitud en la misma proporción. Por tanto, puesto que al final del proceso los dos segmentos de la recta tienen la misma longitud, la tenían ya al principio. No deben confundirse las elipses semejantes con las elipses cofocales.

Cortes en un cilindro Como cortar una elipse en un cono

FUENTES DE CONSULTA *Libro: Geometria analitica (con enfoque en competencias) autor: Israel Sanchez Linares *Wikipedia: Elipse URL:http://es.wikipedia.org/wiki/Elipse