Realimentacion de la salida Sistemas dinamicos Realimentacion de la salida
Contenido El estimador de estado El observador de orden reducido
El estimador de estado
El observador de estado El control por realimentacion de estados asume la disponibilidad de todas las variables de estado. En la practica, sin embargo, este puede no ser el caso, ya sea porque ciertos estados no son medibles, o es muy dificil o muy caro medirlos. A fin de implementar una realimentacion de estados debemos entonces diseñar un dispositivo dinamico, llamado observador o estimador de estados, cuya salida sea una estimacion del vector de estados.
Arquitectura del control Resultados validos si remplazando y(t) por Se asume el sistema conocido, con D = 0 Se usa una estimacion del estado para generar el control es una estimacion de x
Observador a lazo abierto Conociendo A y B, podemos duplicar la ecuacion de estados original Usando solo la entrada para exitar el estimador de lazo abierto Si el sistema y el observador tienen las mismas condiciones iniciales, entonces, para, para cualquier entrada ¿Como hallar el estado inicial x(0) del sistema para usarlo en el observador?
Calculo del estado inicial Si el sistema es observable, su estado inicial x(0) puede ser calculado de u y y en cualquier intervalo de tiempo, digamos [0, t1]. y podemos entonces calcular el estado en t2 y hacer , . Entonces, para todo t t2.
(los valores propios de la matriz A). Dinamica del error La ecuacion del error de estimacion esta dada por Si A es Hurwitz, entonces → 0 cuando t → ∞. Por lo tanto, la dinamica del error esta completamente determinada por la dinamica en lazo abierto del sistema (los valores propios de la matriz A).
Limitaciones del observador a lazo abierto El observador en lazo abierto tiene las siguientes importantes desventajas: Aun con la matriz A estable, esta dinamica pudiera ser muy lenta. If A tiene autovalores con parte real positiva, entonces cualquier pequeña diferencia entre y para algun t0, causada por un disturbio o una imperfeccion en la estimacion del estado inicial, hara que la diferencia entre y crezca con el tiempo
El observador a lazo cerrado Estimador a lazo cerrado = estimador asintotico A, B and C son conocidos El error de estimacion de la salida, pasando por una ganancia constante L, es usado como un termino de correccion. Si el error es cero, no es necesaria ninguna correcion.
El observador a lazo cerrado Estimador a lazo cerrado = estimador asintotico A, B and C son conocidos Si la diferencia no es cero y si la ganancia L es diseñada apropiadamente, la diferencia llevara al estado estimado a su estado real Forma simplificada
El error de estimacion El estado verdadero: El estado de estimado: La dinamica del error Si todos los autovalores de (A LC) pueden ser asignados arbitrariamente, podemos controlar la velocidad con que el error de estimacion se aproxima a cero No hay necesidad de calcular el estado inicial de la ecuación de estado original.
Teorema (Asignacion de Autovalores en observadores). Considere el par (A, C). Todos los autovalores de (A LC) pueden asignarse arbitrariamente seleccionando un vector real L si y solo si (A, C) es observable. Prueba: Recurriendo a la dualidad controlabilidad/observabilidad, el par (A, C) es observable si y solo si (AT, CT) es controlable. Si (AT, CT) es controlable todos los autovalores de (AT CTK) pueden asignarse arbitrariamente mediante una eleccion adecuada de K. La transpuesta de (AT CTK) es (A KTC) y por lo tanto, hacemos L = KT. El mismo procedimiento usado para calcular la matriz de realimentacion de estados K sirven para calcular la matriz L del observador.
Dinamica del estado en lazo cerrado Definiendo el estado del sistema aumentado, en lazo cerrado Partiendo de las ecuaciones
Dinamica del estado en lazo cerrado Dinamica del sistema aumentado
Diseño del observador Los autovalores del sistema realimentado son la union de los autovalores de Se pueden obtener los autovalores deseados de A – BK seleccionado la ganancia de realimentacion Se pueden obtener los autovalores deseados de A – LC seleccionado la ganancia del observador Esta es la propiedad de la separacion: la solucion en dos diseños separados
Procedimiento de diseño del observador Obtener el par (AT, CT). Si el par es controlable continuar Elegir los valores propios deseados del observador en lazo cerrado Usando (AT, CT), calcular la matriz de realimentacion K mediante el procedimiento para la asignacion de autovalores, via la forma canonica. O con la funcion K = place(A,B,P) de MATLAB Obtener L = KT
Ejemplo Diseñar el observador para el pendulo invertido en el carro
Ejemplo Comprobamos si el par (AT, CT) es controlable desde la primera salida matlab sysO = ss(A',C',C,D) Q = ctrb(sysO)
Ejemplo Se seleccionan los autovalores deseados del observador escogidos por las propiedades de la respuesta Polinomio caracteristico deseado en lazo cerrado
Ejemplo Polinomio caracteristico en lazo abierto Ganancia del observador, para el sistema en la forma canonica
Ejemplo La ganancia de realimentacion en las coordenadas originales es, Finalmente
Ejemplo El observador
Ejemplo El observador con realimentacion Para
Ejemplo Comparacion
El observador de orden reducido
El observador de orden reducido Se supondra, ahora, que q de los n estados del sistema pueden ser medidos en forma directa. Estos estados se agrupan en el vector mientras que los restantes n − q estados se agrupan en La ecuacion de estado original C tiene rango completo de fila
El observador de orden reducido Definiendo Por la transformacion R is una matriz arbitraria (nq)n
El observador de orden reducido Todos los estados x1 son accesibles. Solo necesitan ser estimados los ultimos nq elementos de Usando , tenemos Definiendo, En la ecuacion de salida se ha puesto de manifiesto que todos los estados x1 son accesibles y seran tomados como salidas para su realimentacion
Realimentacion de los estados estimados Si (A, C) es observable, puede ser construido un estimador completo o de orden reducido con valores propios arbitrarios Si las variables de estado NO estan disponibles para realimentacion, podemos diseñar un estimador de estado
Realimentacion de los estados estimados Realimentacion de estado: Ecuacion de la salida: y = Cx Ecuacion de estado: El estimador de estado
Transformacion equivalente La matriz A es triangular a bloques; por lo tanto sus valores propios son la union de aquellos de (ABK) y (ALC)
Caracteristicas La insercion del estimador de estado no afecta a los autovalores de la realimentacion de estado original; ni los autovalores del estimador de estado son afectados por esta condición. El diseño de la realimentación de estado y el diseño de estimator de estado pueden llevarse a cabo de forma independiente. Esta es llamada la propiedad de separación.
Caracteristicas La ecuacion de estado resultante no es controlable y la funcion de transferencia es igual a Esta es la funcion de transferencia del sistema realimentado original sin usar el estimador de estado El estimador es completamente cancelado en la funcion de transferencia desde r a y
Ejemplo Diseñar la realimentacion de estado u = r Kx para ubicar los autovalores en 1 y 2. Solucion:
Ejemplo Diseñar la realimentacion de estado u = r Kx para ubicar los autovalores en 1 y 2. Realimentacion de estado:
Ejemplo Sistema original: Sistema realimentado:
Ejemplo Diseñar el estimador de estado completo con autovalores en 4 y 5. Solucion:
Ejemplo Diseñar el estimador de estado completo con autovalores en 4 y 5. Es estimador de estado:
Bibliografia A. D. Lewis, A Mathematical Approach to Classical Control, 2003, on line acces http://www.mast.queensu.ca/~andrew/teaching/math332/notes.shtml Robert L., Williams, Douglas A. Lawrence “Linear State-Space Control Systems”, Wiley, 2007
FIN