Magnetismo Desde la antigüedad se sabe que ciertos materiales, llamados imanes, tienen la propiedad de atraer pequeños trozos de metal. Esta propiedad.

Slides:



Advertisements
Presentaciones similares
Capítulo 30 – Campos magnéticos y momento de torsión
Advertisements

Capítulo 29 – Campos magnéicos
Capítulo 31A Inducción electromagnética
Capítulo 24 – Campo eléctrico
CAMPO MAGNÉTICO (I).
Fuerzas magnéticas Introducción
ELECTRICIDAD Y MAGNETISMO
Tema 6 Campos y fuerzas.
EL CAMPO MAGNÉTICO Y ELECTROMAGNÉTISMO
El magnetismo y la electricidad
Movimiento en 2 dimensiones. 2
OBJETIVO FUNENTES DE MAGNETISMO
ELECTROMAGNETISMO (II)
Tema 5.3 Fuerzas magnéticas entre corrientes
El campo magnético es una región del espacio en la cual una carga eléctrica puntual de valor q en movimiento, a una velocidad , sufre los efectos de.
FLUJO DE CAMPO ELÉCTRICO Y EJEMPLOS
Magnetismo y campo magnético
UNIDAD 3 ELECTROMAGNETISMO
CAMPO ELECTRICO (
Campos magnéticos Chinos: siglo XIII a.C. Arabes, indios,…
Principios Básicos de la Electricidad
Fuentes de Campos Magnéticos
Ruth Elizabeth Robayo Escobar Fundamentos de Electricidad y Magnetismo Código: No. de lista: 31 Grupo 12.
MAGNETISMO Grecia 800 A.C. Ciudad de Magnesia
Resumen: clase 18 de agosto de 2010
FISICA DE CAMPOS DOCENTE : JOSE DORIA
Magnetismo Daniel Sandoval Guerra. Marcela Sánchez Segura.
El Electromagnetismo Orlando B. Escalona T. J. Mauro Briceño
Menu de hoy Continuamos con campos Eléctricos de distribuciones de carga continua Flujo Eléctrico Ley de Gauss Aplicaciones de la ley de Gauss Conductores.
Tomado del material preparado por el Dr. Ricardo Mediavilla
Corrientes y Magnetismo
Circuitos eléctricos.
Campo eléctrico. Ley de Coulomb La fuerza F entre dos partículas cargadas q 1 y q 2 es directamente proporcional al valor de las cargas e inversamente.
Ingeniería del Software
M.Ed. Cecilia Fernández F.
EM2011 Serie de Problemas 02 -Aplicaciones- G 12NL8 Diego Universidad Nacional de Colombia Depto de Física Mayo 2011.
CAMPO MAGNÉTICO y ELÉCTRICO… Algunas diferencias
LED DE AMPERE Y LEY DE COULOMB.
UNIVERSIDAD NACIONAL DE COLOMBIA
Corrientes Eléctricas y Magnetismo.
Intensidad del campo eléctrico
Magnetismo Biofísica I Periodo 2013.
FISICA II Electricidad y magnetismo
VECTORES MÉTODO DEL TRIÁNGULO
MÁQUINAS ELÉCTRICAS II CAPÍTULO 1: ELECTROMAGNETISMO
Electromagnetismo J. Mauro Briceño O. Escalona T. UNIVERSIDAD DE LO S ANDES.
Objetivos: Después de completar ese módulo deberá:
CAMPO MAGNÉTICO.
Unidad II: Corriente eléctrica y magnetismo.
Martes 31 de julio del N S La partícula q positiva no se desvía debido a que lleva una dirección paralela al campo magnético.
MAGNETISMO - INDUCCIÓN ELECTROMAGNÉTICA
TEORÍA ELECTROMAGNÉTICA
Vicente Franco Bayona código de agosto de 2011 Electricidad y magnetismo Grupo 12 Universidad nacional de colombia.
 Observar la desviación del rayo de electrones en campos eléctricos de tensión continua y alterna.  Observar la desviación del rayo de electrones bajo.
CAMPO MAGNÉTICO Generalidades Ley de Biot-Savart.
I UNIDAD: FENÓMENOS ELECTROSTÁTICOS
© PROFESOR JUAN A. RAMIREZ S. PANAMA. 2015
FUNDAMENTOS DE ELECTRICIDAD
Consideraciones generales del Magnetismo
Centro de Estudios Tecnológicos, Industrial y de Servicios No
Unidad 5 Electro Estática 5.5 Campo eléctrico Integrantes: Mario Pablo Díaz Gómez Adrián Carrasco Leandro Ulises Herrera Juárez.
LA INTERACCIÓN ELECTROMAGNÉTICA
El campo magnético Imanes La Tierra es un imán con polos magnéticos cerca de los polos geográficos.
Dpto. de Física y Química
Dpto. Física Aplicada UCLM
Campo Magnético Hace ~ 2500 años – Material encontrado en Magnesia (Turquía) que atrae piezas de hierro. S. XIII – Los imanes tienen dos polos  No hay.
Todo es Movimiento.
Capítulo 29 – Campos magnéicos Presentación PowerPoint de Paul E. Tippens, Profesor de Física Southern Polytechnic State University Presentación PowerPoint.
Capítulo 29 – Campos magnéicos
Conversión de Energía UNIDAD I CLASE 02: Procesos de generación de electricidad 01/01/2018Procesos de generación de electricidad1.
Transcripción de la presentación:

Magnetismo Desde la antigüedad se sabe que ciertos materiales, llamados imanes, tienen la propiedad de atraer pequeños trozos de metal. Esta propiedad atractiva se llamó magnetismo. N S Imán de barra N S

Polos magnéticos S N Limaduras de hierro La intensidad de un imán se concentra en los extremos, llamados “polos” norte y sur del imán. N S E W Brújula Imán de barra Imán suspendido: el extremo que busca el N y el extremo que busca el S son los polos N y S.

Atracción-repulsión magnética Fuerzas magnéticas: polos iguales se repelen Polos distintos se atraen

Líneas de campo magnético Las líneas de campo magnético se pueden describir al imaginar una pequeña brújula colocada en puntos cercanos. N S La dirección del campo magnético B en cualquier punto es la misma que la dirección que indica esta brújula. El campo B es fuerte donde las líneas son densas y débil donde las líneas están esparcidas.

Líneas de campo entre imanes Polos distintos N S Atracción Salen de N y entran a S N Repulsión Polos iguales

Densidad de las líneas de campo DN Densidad de línea DA Campo eléctrico Df Densidad de línea DA Líneas de flujo de campo magnético f N S Al campo magnético B a veces se le llama densidad de flujo en webers por metro cuadrado (Wb/m2).

Densidad de flujo magnético Df Densidad de flujo magnético: DA Las líneas de flujo magnético son continuas y cerradas. La dirección es la del vector B en dicho punto. Las líneas de flujo NO están en la dirección de la fuerza sino ^. Cuando el área A es perpendicular al flujo: La unidad de densidad de flujo es el weber por metro cuadrado.

Cálculo de densidad de flujo cuando el área no es perpendicular El flujo que penetra al área A cuando el vector normal n forma un ángulo q con el campo B es: n A q a B El ángulo q es el complemento del ángulo a que el plano del área forma con el campo B. (cos q = sin a)

Origen de campos magnéticos Recuerde que la intensidad de un campo eléctrico E se definió como la fuerza eléctrica por unidad de carga. Puesto que no se han encontrado polos magnéticos aislados, no se puede definir el campo magnético B en términos de la fuerza magnética por unidad de polo norte. + E En vez de ello se verá que los campos magnéticos resultan de cargas en movimiento, no de carga o polos estacionarios. Este hecho se cubrirá más tarde. + B v v ^

Fuerza magnética sobre carga en movimiento Imagine un tubo que proyecta carga +q con velocidad v en el campo B perpendicular. v F El experimento muestra: Fuerza magnética F hacia arriba sobre carga que se mueve en el campo B. Lo siguiente resulta en una mayor fuerza magnética F: aumento en velocidad v, aumento en carga q y un mayor campo magnético B.

Dirección de la fuerza magnética Regla de la mano derecha: Con la mano derecha plana, apunte el pulgar en dirección de la velocidad v, dedos en dirección del campo B. La palma de la mano empuja en dirección de la fuerza F. B v F B v F N S La fuerza es mayor cuando la velocidad v es perpendicular al campo B. La desviación disminuye a cero para movimiento paralelo.

Fuerza y ángulo de trayectoria La fuerza de desviación es mayor cuando la trayectoria es perpendicular al campo. Es menor en paralelo. S N S N B v F v sen q q S N

Definición del campo B Observaciones experimentales muestran lo siguiente: Al elegir las unidades adecuadas para la constante de proporcionalidad, ahora se puede definir el campo B como: Intensidad de campo magnético B: Una intensidad de campo magnético de un tesla (T) existe en una región del espacio donde una carga de un coulomb (C) que se mueve a 1 m/s perpendicular al campo B experimentará una fuerza de un newton (N).

Fuerza magnética resultante: F = 1.50 x 10-7 N, hacia arriba Ejemplo 1. Una carga de 2 nC se proyecta como se muestra con una velocidad de 5 x 104 m/s en un ángulo de 300 con un campo magnético de 3 mT. ¿Cuáles son la magnitud y dirección de la fuerza resultante? Dibuje un bosquejo burdo. v sen f v 300 B v F B q = 2 x 10-9 C v = 5 x 104 m/s B = 3 x 10-3 T q = 300 Al usar la regla de la mano derecha, se ve que la fuerza es hacia arriba. Fuerza magnética resultante: F = 1.50 x 10-7 N, hacia arriba

Fuerzas sobre cargas negativas Las fuerzas sobre cargas negativas son opuestas a las que ocurren sobre fuerzas positivas. La fuerza sobre la carga negativa requiere una regla de la mano izquierda para mostrar fuerza F hacia abajo. F B v Regla de mano izquierda para q negativa B v F Regla de mano derecha para q positiva N S N S

Cómo indicar la dirección de los campos B Una forma de indicar las direcciones de los campos perpendiculares a un plano es usar cruces X y puntos · : Un campo dirigido hacia el papel se denota mediante una cruz “X” como las plumas de una flecha. X X X X X X X X X X X X X X X X · · · · Un campo dirigido afuera del papel se denota mediante un punto “•” como la parte frontal de una flecha.

Práctica con direcciones: ¿Cuál es la dirección de la fuerza F sobre la carga en cada uno de los ejemplos siguientes? Arriba F + v X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X v + Izquierda F · · · · Arriba F · · · · - v - v F Derecha q negativa

Desviación cero cuando FB = FE Campos E y B cruzados El movimiento de partículas cargadas, como los electrones, se puede controlar mediante campos eléctricos y magnéticos combinados. Nota: FE sobre el electrón es hacia arriba y opuesta al campo E. x x x x x x x x + - e- v Pero, FB sobre el electrón es hacia abajo (regla de la mano izquierda). B v FB - B v FE E e- - Desviación cero cuando FB = FE

Selector de velocidad - Este dispositivo usa campos cruzados para seleccionar sólo aquellas velocidades para las que FB = FE. (Verifique las direcciones para +q) Cuando FB = FE : x x x x x x x x + - +q v Fuente de +q Selector de velocidad Al ajustar los campos E y/o B, una persona puede seleccionar sólo aquellos iones con la velocidad deseada.

Ejemplo 2. Un ión de litio, q = +1 Ejemplo 2. Un ión de litio, q = +1.6 x 10-16 C, se proyecta hacia un selector de velocidad donde B = 20 mT. El campo E se ajusta para seleccionar una velocidad de 1.5 x 106 m/s. ¿Cuál es el campo eléctrico E? x x x x x x x x + - +q v Fuente de +q V E = vB E = 3.00 x 104 V/m E = (1.5 x 106 m/s)(20 x 10-3 T);

Movimiento circular en campo B La fuerza magnética F sobre una carga en movimiento siempre es perpendicular a su velocidad v. Por tanto, una carga que se mueve en un campo B experimentará una fuerza centrípeta. X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X Fc centrípeta = FB + R Fc El radio de la trayectoria es:

x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x Espectrómetro de masa Iones que pasan a través de un selector de velocidad con una velocidad conocida llegan a un campo magnético como se muestra. El radio es: +q R + - x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x Placa fotográfica m1 m2 rendija La masa se encuentra al medir el radio R:

x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x Ejemplo 3. Un ión de neón, q = 1.6 x 10-19 C, sigue una trayectoria de 7.28 cm de radio. Superior e inferior B = 0.5 T y E = 1000 V/m. ¿Cuál es su masa? +q R + - x x x x x x x x Placa fotográfica m rendija x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x v = 2000 m/s m = 2.91 x 10-24 kg

Resumen La dirección de las fuerzas sobre una carga que se mueve en un campo eléctrico se puede determinar mediante la regla de la mano derecha para cargas positivas y la regla de la mano izquierda para cargas negativas. N S B v F Regla de la mano derecha para q positiva N S F B v Regla de la mano izquierda para q negativa

Resumen (continúa) F B v q v sen q Para una carga que se mueve en un campo B, la magnitud de la fuerza está dada por: F = qvB sen q

Resumen (continúa) Selector de velocidad: - Espectrómetro de masas: - x x x x x x x x + - +q v V +q R + - x x x x x x x x m rendija x x x x x x x x x x x x x x x x x x x x x x x x x x Espectrómetro de masas:

CONCLUSIÓN: Capítulo 29 Campos magnéticos