Programación No Lineal Antonio H. Escobar Z. 2015 Universidad Tecnológica de Pereira – Colombia Posgrado en Ingeniería Industrial Maestría en Investigación.

Slides:



Advertisements
Presentaciones similares
UNIVERSIDAD CENTRAL “MARTA ABREU” DE LAS VILLAS
Advertisements

José David Arzabe Armijo
COSTOS ESTÁNDAR. Concepto de Costos Estándar.
PLANEACIÓN ESTRATÉGICA
UNIVERSIDAD NACIONAL DE INGENIERIA
INVESTIGACION DE OPERACIONES I
Logística (Manejo de la cadena de abastecimiento)
Programación Lineal Antonio H. Escobar Z Universidad Tecnológica de Pereira – Colombia Posgrado en Ingeniería – Maestría/Doctorado.
Programación 10-Marzo-11.
UNIDAD I MODELOS Y TOMA DE DECISIONES
análisis de la producción
Módulo Mercadotecnia Ma. Teresa Jerez.
Universidad Autónoma San Francisco
Evaluación de nuevas Tecnologías
Capacidad de producción
LA GESTIÓN DE LA PRODUCCIÓN
Aplicaciones de la derivada Resuelve problemas de optimización aplicando las ideas básicas relacionadas con extremos de funciones de una variable Bloque.
Ciclo de formulación del proyecto.
5.2. Definición de las funcionalidades
Electivo Integración Normas de Calidad, Seguridad, Medio Ambiente y Riesgos en la Gestión de la Empresa. Profesor : Fernando Vargas Gálvez Ingeniero Civil.
Optimización Multiobjetivo Por: Antonio H
Programación Lineal Entera Antonio H. Escobar Z Universidad Tecnológica de Pereira – Colombia Posgrado en Ingeniería – Maestría/Doctorado.
METODOS DETERMINISTICOS
Curso de Verano 2010 para el ITSSMT
Antonio H. Escobar Zuluaga Universidad Tecnológica de Pereira - Colombia 2014 Introducción a la Optimización matemática Antonio H. Escobar Zuluaga Universidad.
Universidad de los Andes-CODENSA
Programación Lineal Entera Antonio H. Escobar Z Universidad Tecnológica de Pereira – Colombia Posgrado en Ingeniería – Maestría/Doctorado.
Importancia de las aplicaciones de estadística en el control de procesos Guatemala 2010.
Sistema Nacional de Inversión Pública Econ. Alberto Morales Santiváñez.
S.S.D. Toma de Decisiones “ Identificación y elección de un curso de acción entre alternativas, para tratar un problema concreto o aprovechar una oportunidad.
PROGRAMACIÓN LINEAL.
El Proceso de Software es la única manera de desarrollar sistemas de calidad. F. o V. Justifica tu respuesta. Que tiene que ver la globalización.
Investigación de Operaciones (IO)
Marco Legal Relacionado al Endeudamiento
Toma de Decisiones Toda toma de decisión empieza con la detección de un problema. Para tomar la decisión correcta, se debe: Definir el problema en forma.
Programación Lineal Entera Antonio H. Escobar Z Universidad Tecnológica de Pereira – Colombia Posgrado en Ingeniería Maestría en Ingeniería Eléctrica.
Universidad Simón Bolívar Cátedra: Administración de materiales
INSTITUTO TECNOLOGICO DE VILLAHERMOSA TABASCO Equipo # 5 INTEGRANTES: HIPOLITO SOSA MARTINEZ ISIDRA GUADALUPE VASQUEZ PEREZ LORENZO ANTONIO PAYRO cruz.
UNEXPO REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA “ANTONIO JOSÉ DE SUCRE” VICE-RECTORADO “LUÍS CABALLERO MEJÍAS”
Sistemas, Procesos y Modelos
1 Problemas de decisión Tipo particular de problemas de optimización Sistemas que evolucionan con el tiempo Se toman decisiones en momentos sucesivos de.
¿QUÉ ES UNA ESTRATEGIA? ¿QUÉ ES LOGISITCA?
“Introducción a las Ciencias de la Informática”
La Gestión y el Control de Procesos
Administración de RR.HH. y Materiales
Programación Lineal Antonio H. Escobar Z Universidad Tecnológica de Pereira – Colombia Posgrado en Ingeniería – Maestría/Doctorado.
PLAN DE OPERACIONES ESTUDIO TECNICO.
 INSTITUTO TECNOLOGICO DE VILLAHERMOSA TABASCO Equipo # 5 INTEGRANTES: HIPOLITO SOSA MARTINEZ ISIDRA GUADALUPE VASQUEZ PEREZ LORENZO ANTONIO PAYRO cruz.
ADMINISTRACIÓN FINANCIERA
Programación Lineal Antonio H. Escobar Z Universidad Tecnológica de Pereira – Colombia Posgrado en Ingeniería – Maestría/Doctorado.
El Sistema del mercado y el flujo circular
UNIVERSIDAD TECNOLÓGICA ECOTEC. ISO 9001:2008 PROYECTOS TURISTICOS I Formulación y evaluación de proyectos (TUR280) Jorge Paguay Ortiz 1.
ADMINISTRACIÓN ESTRATÉGICA
Unidad II: Teorias del comportamiento del consumidor y de la empresa
Preparación y Evaluación de Proyectos
Curso: PROYECTOS DE INGENIERÍA UNIVERSIDAD NACIONAL DEL SANTA Escuela Académico Profesional de Ingeniería en Energía “PIP: Formulación del Proyecto (2):
MODELAMIENTO MATEMÁTICO DE PROCESOS INDUSTRIALES
TRABAJO ESPECIAL DE GRADO TRABAJO ESPECIAL DE GRADO CAPITULO IV Y V.
Introducción al problema
COMPONENTES DE UN PROYECTO
Instituto Tecnológico De la Laguna
Las fases del ciclo de la vida de desarrollo de sistemas
G ESTIÓN EMPRESARIAL FRENTE A LA COMPETITIVIDAD. A NTECEDENTES Inicia a través de una revolución en las tecnologías Se basa en la economía del conocimiento.
Hernández Camacho Víctor Jesus Islas Sánchez Karla Vanessa
Programa Sobre Procesos de Negocios SCM y Logística. Integración de procesos que permite a empresas en crecimiento implementar las mejores prácticas en.
Mclobely System Solver Ing. Marko Castillo Peña. INTRODUCCIÓN  Actualmente la administración está funcionando en un ambiente de negocios que está sometido.
Programación Lineal Antonio H. Escobar Z Universidad Tecnológica de Pereira – Colombia Posgrado en Ingeniería – Maestría/Doctorado.
Universidad Fermín toro Vice Rectorado Académico Decanato de Ciencias Económicas y Sociales Licenciatura en Administración, Mención: Gerencia Integrantes.
Curso: PROYECTOS DE INGENIERÍA UNIVERSIDAD NACIONAL DEL SANTA Escuela Académico Profesional de Ingeniería en Energía “PIP: Formulación del Proyecto (2):
Gerenciamiento de Proyectos. Planeamiento Estratégico  Introducción  Necesidad e Idea  Objetivos y Estructura Inicial  La importancia del Gerenciamiento.
Transcripción de la presentación:

Programación No Lineal Antonio H. Escobar Z Universidad Tecnológica de Pereira – Colombia Posgrado en Ingeniería Industrial Maestría en Investigación Operativa y Estadística

Qué es Optimizar? Es modificar un proceso, un sistema o la forma de realizar una actividad para mejorar su eficiencia. Es hacer más con los mismos recursos. Es hacer lo mismo con menos recursos. Es cambiar recursos ineficientes por recursos eficientes. Es eliminar recursos existentes que afectan negativamente el sistema. Es involucrar cambios tecnológicos, productivos y organizacionales.

Porque Optimizar? Porque existen recursos en las organizaciones que no están siendo aprovechados adecuadamente. Porque no se alcanzan los resultados deseados. Porque se requiere aumentar la competividad a costos eficientes de inversión, operación y mantenimiento. Porque se tienen recursos ineficientes o que no se necesitan. Porque debe adecuarse el sistema existente para que responda a las exigencias futuras.

Los procesos de optimización tratan de responder los siguientes interrogantes: Puede obtenerse un diseño más económico? Se están utilizando eficientemente recursos que son escasos o limitados o no renovables? Puede obtenerse una operación más económica? Se están utilizando eficientemente recursos que son costosos?

La optimización está asociada a: Nivel de conocimiento científico acumulado en los grupos de desarrollo. Nivel de tecnología que los miembros del grupo dominan. Avance del conocimiento existente a nivel de modelamiento de sistemas reales. Nivel de exigencia de las tareas o procesos. Variabilidad de los aspectos que se pueden resolver. Desarrollo actual de los métodos de solución de los modelos matemáticos resultantes.

La optimización está asociada a: Adecuada valoración de resultados. Flujo de ideas entre los miembros del grupo. Costos encallados resultantes. Calidad de los insumos (información de entrada). Estrategias utilizadas. Desarrollo de la infraestructura tecnológica que se usa.

 Abarca un conjunto de métodos científicos que apoyan la toma de decisiones y que permiten determinar la mejor forma de diseñar y operar un sistema bajo condiciones que exigen el uso de recursos escasos o costosos.  Provee un conjunto de algoritmos que pueden ser implementados en sistemas de cómputo y que se constituyen en herramientas efectivas para resolver problemas con soluciones alternativas y tomar decisiones.  Se aplica en todas las disciplinas. Investigación de Operaciones

Herramientas:

Problema de la Vida real Modelo Matemático de la parte que deseo controlar Solución Matemática Técnicas de modelamiento Técnicas de solución Realimentación o ajustes para la implementación El modelo puede no existir

SIMULACION IDENTIFICACION Evaluación del Funcionamiento del Sistema Información OPTIMIZACION Funciones de Respuesta Parámetros Caracterización Planes de Inversión Políticas Estratégicas Planes Operativos Diseños SIMULACION Verificación de la Bondad de las Decisiones Encadenamiento de modelos Definición de Objetivos y adición de metas Modelo de operación Modelo de optimización

Mínimos y máximos globales y locales, puntos de inflexión:

Función Objetivo: Medida de la efectividad buscada expresada en función de las variables de decisión. Es lo que se minimiza o se maximiza. Variables de decisión: Decisiones Cuantificables sobre las que se ejerce control. Por ejemplo: ruta que debe seguir un vehículo de transporte masivo, localización y número de paradas, número de vehículos, precio de pasaje. Restricciones: Factores que limitan los valores que pueden asumir las variables de decisión. Por ejemplo: capacidad máxima de cada vehículo. Parámetros: Datos o recursos que asumen valores constantes y que forman los coeficientes de las variables. Por ejemplo, velocidad de desplazamiento, costo de operación por kilómetro. Componentes de un problema de Optimización:

Métodos de solución

 Complejidad Descriptiva: cantidad de información que debe suministrarse para tener una descripción adecuada del sistema.  Complejidad Generativa: cantidad de instrucciones que se deben dar para construir el sistema bajo estudio.  Complejidad Computacional: cantidad de tiempo y esfuerzo implicado en la solución del problema. En PL esta asociada con el tamaño del problema (n y m).  Complejidad Organizacional: variedad de formas de ordenamiento de los componentes del sistema.  Complejidad Operativa: variedad de modos de operación de los componentes del sistema y del propio sistema. Problema de Programación No Lineal complejidad

Un modelo matemático representa el desempeño y comportamiento de un sistema, en términos de ecuaciones matemáticas, ofreciendo resultados cuantitativos Un modelo matemático pueden elaborarse a partir del entendimiento físico de un sistema ó a partir de curvas o datos experimentales. El modelo puede estar constituido por ecuaciones algebraicas, ecuaciones diferenciales ordinarias y/o parciales, ecuaciones integrales ó por la combinación de ellas. Modelo matemático

Mundo Real

Min  t  j  h CT t (GT jth ) sujeto a: GD zth -  u  TN(z) LD uzth = 0 GD zth + GHA zth + DEF zth = DEM zth EN uth -  j  L1(u) GTE juth -  v  L2(u) LL vuth = 0 Min  t  j  h CT t (GT jth ) sujeto a: GD zth -  u  TN(z) LD uzth = 0 GD zth + GHA zth + DEF zth = DEM zth EN uth -  j  L1(u) GTE juth -  v  L2(u) LL vuth = 0

Mundo Virtual Min  t  j  h CT t (GT jth ) sujeto a: GD zth -  u  TN(z) LD uzth = 0 GD zth + GHA zth + DEF zth = DEM zth EN uth -  j  L1(u) GTE juth -  v  L2(u) LL vuth = 0 Min  t  j  h CT t (GT jth ) sujeto a: GD zth -  u  TN(z) LD uzth = 0 GD zth + GHA zth + DEF zth = DEM zth EN uth -  j  L1(u) GTE juth -  v  L2(u) LL vuth = 0

PIB 5.2% Costo de combustibles Hidrología Inflación = 10% Devaluación 12% Costo de transporte Min  t  j  h CT t (GT jth ) sujeto a: GD zth -  u  TN(z) LD uzth = 0 GD zth + GHA zth + DEF zth = DEM zth EN uth -  j  L1(u) GTE juth -  v  L2(u) LL vuth = 0 Min  t  j  h CT t (GT jth ) sujeto a: GD zth -  u  TN(z) LD uzth = 0 GD zth + GHA zth + DEF zth = DEM zth EN uth -  j  L1(u) GTE juth -  v  L2(u) LL vuth = 0 Mundo Virtual Costo de oportunidad

* Una fábrica produce mesas metálicas con superficie de vidrio. * La cantidad de mesas fabricadas semanalmente está limitada por la cantidad máxima disponible de tubos metálicos y de láminas de vidrio que puede adquirir en el mercado: 50 tubos/semana 75 láminas/semana Ejemplo:

Con el propósito de maximizar las ganancias, la fábrica diversifica sus productos. Para esto se diseñan cuatro tipos de mesas y se evalúa la ganancia neta que cada una produce y sus requerimientos de tubos y vidrio. Ejemplo: Tipo de mesa que se fabrica en la actualidad

Ejemplo: Lucro : hierro: vidrio : cantidad disponible

Que modelos debe fabricar y en que cantidad para obtener el máximo lucro?

Ejemplo: Lucro : hierro: vidrio : cantidad máxima disponible variables de decisión: x2x2 x1x1 x3x3 x4x4

Lucro : variables de decisión: x2x2 x1x1 x3x3 x4x4 Modelamiento: x1x1 x2x2 x4x max x3x Función Objetivo

Ejemplo: hierro: 50 variables de decisión: x2x2 x1x1 x3x3 x4x4 x1x1 x2x2 x4x x3x3 + 3 ≤ 50 : hierro Restricción asociada a la cantidad de hierro disponible

Ejemplo: vidrio : variables de decisión: x2x2 x1x1 x3x3 x4x4 x1x1 x2x2 x4x x3x3 + 1 ≤ 75 : vidrio Restricción asociada a la cantidad de vidrio disponible

x1x1 x2x2 x4x x1x1 x2x2 x4x x1x1 x2x2 x4x max x3x x3x3 + 3 x3x3 + ≤ 50 ≤ 75 Modelo resultante: : hierro : vidrio

x1x1 x2x2 x4x x1x1 x2x2 x4x x1x1 x2x2 x4x max x3x x3x3 + 3 x3x3 + = 50 = 75 Modelamiento: : hierro : vidrio + + x5x5 x6x6 Variables de holgura

x1x1 x2x2 x4x x1x1 x2x2 x4x x1x1 x2x2 x4x max x3x x3x3 + 3 x3x3 + 1 = 50 = 75 Caso de estudio: la empresa fabrica únicamente mesas tipo 1 y evalúa la posibilidad de fabricar otro tipo de mesa. : hierro : vidrio + + x5x5 x6x6

x1x1 x2x2 x4x x1x1 x2x2 x4x x1x1 x2x2 x4x max x3x x3x3 + 3 x3x3 + 1 = 50 = 75 : hierro : vidrio + + x5x5 x6x Solución básica: Lucro = 7500 ; x1x1 = 50 ;x6x6 = 25 ; La cantidad de mesas tipo 1 construidas son limitadas por el recurso que primero se agota: cantidad de tubos de hierro disponibles (recurso1). Con 50 tubos puedo hacer 50 mesas tipo 1 (se requiere 1 tubo por mesa). Del recurso 2 (m 2 de vidrio) se usan 50 m 2 y quedan 25 m 2 sobrantes. La restricción 1 se activa y la restricción 2 queda con holgura: x 6 = 25 m 2 0 Solución básica:

x1x1 x2x2 x4x x1x1 x2x2 x4x x1x1 x2x2 x4x max x3x x3x3 + 3 x3x3 + 1 = 50 = x5x5 x6x Una mesa tipo 2 (que requiere 4 tubos de hierro) desplaza 4 mesas tipo 1 (que requieren 1 tubo de hierro cada una). Esto porque esta restricción está en su límite. Respecto al recurso: m 2 de vidrio, no hay afectación de mesas tipo 1 porque esta restricción tiene holgura. En consecuencia, el beneficio neto de fabricar una mesa tipo 2 en lugar de una mesa tipo 1 es: 500 – 4(150) = (no es conveniente). 0 Es conveniente fabricar mesas tipo 2 en lugar de mesas tipo 1 ? : hierro : vidrio

x1x1 x2x2 x4x x1x1 x2x2 x4x x1x1 x2x2 x4x max x3x x3x3 + 3 x3x3 + 1 = 50 = x5x5 x6x Una mesa tipo 3 (que requiere 3 tubos de hierro) desplaza 3 mesas tipo 1 (que requiere 1 tubo de hierro cada una). Esto porque esta restricción está en su límite. Respecto al recurso: m 2 de vidrio, no hay afectación de mesas tipo 1 porque esta restricción tiene holgura. En consecuencia, el beneficio neto de fabricar una mesa tipo 3 en lugar de una mesa tipo 1 es: 400 – 3(150) = (no es conveniente). 0 Es conveniente fabricar mesas tipo 3 en lugar de mesas tipo 1 ? : hierro : vidrio

x1x1 x2x2 x4x x1x1 x2x2 x4x x1x1 x2x2 x4x max x3x x3x3 + 3 x3x3 + 1 = 50 = x5x5 x6x Una mesa tipo 4 (que requiere 1 tubo de hierro) desplaza 1 mesa tipo 1 (que requiere 1 tubo de hierro cada una). Esto porque esta restricción está en su límite. Respecto al recurso: m 2 de vidrio, no hay afectación de mesas tipo 1 porque esta restricción tiene holgura. En consecuencia, el beneficio neto de fabricar una mesa tipo 4 en lugar de una mesa tipo 1 es: 200 – 1*(150) = (si es conveniente). 0 Es conveniente fabricar mesas tipo 4 en lugar de mesas tipo 1 ? : hierro : vidrio

Solución óptima: 5 35 Lucro: 9000