La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Optimización Multiobjetivo Por: Antonio H

Presentaciones similares


Presentación del tema: "Optimización Multiobjetivo Por: Antonio H"— Transcripción de la presentación:

1 Optimización Multiobjetivo Por: Antonio H
Optimización Multiobjetivo Por: Antonio H. Escobar Zuluaga Universidad Tecnológica de Pereira - Colombia 2014

2 Optimización Multiobjetivo: Forma general

3 Optimización Multiobjetivo: vector de objetivos
Las funciones objetivo son una representación matemática de los criterios usados para determinar la calidad de una solución. Pueden representarse matemáticamente a través de un vector de objetivos:

4 Optimización Multiobjetivo: vector solución y vector de objetivos
Al evaluar una solución particular en las k funciones objetivo se tienen dos vectores:

5 Optimización Multiobjetivo: Espacio de objetivos
Las imágenes de las soluciones definen al denominado espacio de objetivos. Por lo tanto, existe un espacio de soluciones y un espacio de objetivos.

6 Optimización Multiobjetivo: Concepto de dominancia

7 Concepto de dominancia para problema Min-Min
Minimizar f2 Minimizar f1

8 Dominancia y frotera Pareto-Optima para dos funciones objetivo

9 Optimización Multiobjetivo: concepto de trade-off
Existe una dificultad inherente para varios objetivos en conflicto: La imposibilidad de encontrar una solución que sea simultáneamente buena para todos los objetivos. El concepto de Trade-off se asocia al hecho de que al seleccionar una solución en lugar de otra se obtiene una mejora de unos aspectos y el empeoramiento de otros.

10 Optimización Multiobjetivo: concepto de trade-off
La práctica señala que el usuario solo requiere una solución. Cual seleccionar? Se requiere información adicional más especializada. Si a cada objetivo le corresponde un nivel de importancia conocido (ponderación) se selecciona la solución de la frontera Pareto-Optima que más se aproxima a esta preferencia. Un decisor (decision maker) toma la decisión.

11 Metas de la optimización Multiobjetivo
Minimizar la distancia entre cada objetivo individual y su valor óptimo mono-objetivo (suponiendo que conocemos su ubicación ). Maximizar la uniformidad de la distribución de las soluciones no dominadas (que expresen diferentes compromisos: trade-off). Maximizar la cantidad de soluciones de la frontera Pareto-Optima. Maximizar la eficiencia computacional.

12 Eficiencia de un algoritmo Multiobjetivo
Se mide en función de los aspectos que se desean: cercanía a las soluciones mono-objetivo, uniformidad, cantidad de soluciones. Eficiencia computacional En la práctica deben usarse diferentes métricas para evaluar los distintos aspectos del desempeño del algoritmo.

13 Eficiencia de un algoritmo Multiobjetivo
z * problema min-min

14 Eficiencia de un algoritmo Multiobjetivo
La mayor parte de las métricas proponen comparar la frontera Pareto-Optima obtenida por el algoritmo con la denominada PF-true o Verdadera Frontera Pareto Optima. Las medidas de error resultantes de esta comparación indican la efectividad del algoritmo analizado.

15 Eficiencia de un algoritmo Multiobjetivo
algoritmo A algoritmo B problema min-min

16 Métrica de la Tasa de Error:
Indica el porcentaje de soluciones de la frontera Pareto-Optima encontrada que no pertenecen a PF-true. Donde n es el número de soluciones de la frontera Pareto-Optima encontrada, ei = 0 si la solución i pertenece a PF-true y ei = 1 si no pertenece. Un algoritmo ideal debe tener un E = 0.

17 Métrica de Distancia Generacional:
Indica la distancia que hay entre la frontera Pareto-Optima encontrada y la PF-true: GD es la distancia estimada, n es el número de soluciones de la frontera Pareto-Optima encontrada, di es la distancia euclidiana en el espacio de objetivos entre cada solución y el componente mas cercano de PF-true.

18 Técnicas Metaheurísticas Multiobjetivo No Elitistas
Niched Pareto Genetic Algorithm (NPGA) A no domina a B A se prefiere sobre B problema min-min

19 Técnicas Metaheurísticas Multiobjetivo No Elitistas
Nondominated Sorting Genetic Algorithm (NSGA) problema min-min

20 Técnicas Metaheurísticas Multiobjetivo Elitistas
Los operadores de ELITE favorecen las mejores soluciones de una población dándole mayor oportunidad de pasar a la próxima generación. Cuando se comparan configuraciones se incluyen padres y descendientes para determinar quien pasa a la próxima generación. Los padres élite compiten con sus propios hijos para determinar quien sobrevive.

21 Técnicas Metaheurísticas Multiobjetivo Elitistas
Distance-Based Pareto Genetic Algorithm (DPGA) Calcula distancia euclidiana de cada componente de la población Pt a la población élite Et : Pt Et

22 Técnicas Metaheurísticas Multiobjetivo Elitistas
Distance-Based Pareto Genetic Algorithm (DPGA) Determina la distancia euclidiana mínima de cada componente de la población Pt a la población élite Et : A h Pt Et B dmin C D E

23 DPGA Para soluciones dominadas: Para soluciones no dominadas: A A h h
B dmin B C a dmin D D E E Para soluciones dominadas: Para soluciones no dominadas: F(h) = K - dmin F(a) = K + dmin

24 DPGA Las soluciones con valores mayores que K entran a la población élite y eliminan a las soluciones élite que dominan. Las soluciones con valores menores que K son preservadas en la población Pt pero no entran a la población élite Et. A las soluciones de la población Pt se les aplica selección, recombinación y mutación y se crea la población de la siguiente generación. Las soluciones son mayor función de adaptación son Pareto-Optimas y son las más aisladas.

25 NSGA-II Frente Pareto-Optimo, frentes no óptimos y diversidad:
problema min-min

26 NSGA-II En la iteración t (ciclo generacional t) se tiene un conjunto de soluciones que conforman la población Pt. La población Pt se denomina población de padres.

27 NSGA-II A la población de padres Pt se le aplica selección, recombinación y mutación y se genera una población Qt de descendientes del mismo tamaño. Rt = Pt + Qt

28 NSGA-II La población Rt se separa a través de frentes de dominancia Fi y se ordenan las soluciones de cada frente aplicando distancia de apilamiento.

29 NSGA-II Se seleccionan las soluciones de los frentes de dominancia Fi menores y con mayor distancia de apilamiento para la nueva población P(t+1).

30 NSGA-II Nueva población

31 NSGA-II Distancia de apilamiento:

32 Técnicas Metaheurísticas Multiobjetivo
Conceptos aplicados en otras técnicas MO: Hipermalla: Permite controlar la uniformidad respecto a todas las funciones objetivo.

33 Técnicas Metaheurísticas Multiobjetivo
Conceptos aplicados en otras técnicas MO: Malla asimétrica: Permite controlar la uniformidad respecto a una o un subgrupo de funciones objetivo.

34 Técnicas Metaheurísticas Multiobjetivo
Conceptos aplicados en otras técnicas MO: Clustering: Permite controlar tamaño de la frontera Pareto-Optima manteniendo diversidad. separar en clusters hallar centroides Eliminar soluciones

35 Técnicas Metaheurísticas Multiobjetivo
Conceptos aplicados en otras técnicas MO: Dominación guiada: Permite evaluar una subregión de la frontera Pareto-Optima. Define una nueva función que pondera las funciones objetivo.

36 Técnicas Metaheurísticas Multiobjetivo
Conceptos aplicados en otras técnicas MO: Dominación guiada: región dominada tradicional nueva región dominada

37 Técnicas Metaheurísticas Multiobjetivo
Conceptos aplicados en otras técnicas MO: Paralelismo: Permite mejorar la eficiencia computacional. Procesador maestro variables de decisión funciones objetivo Procesador esclavo Procesador esclavo Esquema Maestro-Esclavo

38 Esquema subpoblaciones con migración controlada
Técnicas Metaheurísticas Multiobjetivo Conceptos aplicados en otras técnicas MO: Paralelismo: Permite mejorar la eficiencia computacional. subpoblación 2 subpoblación 1 migración migración migración migración subpoblación 4 subpoblación 3 Esquema subpoblaciones con migración controlada


Descargar ppt "Optimización Multiobjetivo Por: Antonio H"

Presentaciones similares


Anuncios Google