PRUEBAS ESTADISTICAS NO PARAMETRICAS

Slides:



Advertisements
Presentaciones similares
ANOVA DE UN FACTOR.
Advertisements

Tema 19: Contraste no paramétrico de hipótesis: Conceptos básicos
ESTADISTICA INFERENCIAL
Test de Hipótesis.
PRUEBA DE HIPOTESIS Denominada también prueba de significación, tiene como objetivo principal evaluar suposiciones o afirmaciones acerca de los valores.
Contraste de Hipótesis
De la muestra a la población
KRUSKAL WALLIS Jorge Iván Betancur Marta Isabel Naranjo García
U de Mann-Whitney Por Adriana Marcela Ruiz Pineda
CATALINA AGUDELO, HAIDY PAOLA, JULIETH PINO
La prueba U DE MANN-WHITNEY
Universidad de Chile Facultad de Ciencias Químicas y Farmacéuticas
INTRODUCCION A LOS CONTRASTES BASADOS EN RANGOS
METODOLOGÍA DE INVESTIGACIÓN Titular: Agustín Salvia
Uso de pruebas estadísticas paramétricas y no paramétricas
Bioestadística Aplicada I
Nombre: Israel Espinosa Jiménez Matricula: Carrera: TIC Cuatrimestre: 4 Página 1 de 5.
Redes Múltiples Redes Sociales: Conceptos Básicos IV.
Prueba de hipótesis Equivalencia entre la prueba de hipótesis y los intervalos de confianza Valor de probabilidad Valor de probabilidad unilateral Prueba.
Tests de hipótesis Los tres pasos básicos para testear hipótesis son
Clases 3 Pruebas de Hipótesis
Inferencia Estadística
CHI-CUADRADO Y DISTRIBUCION NORMAL
Clases 4 Pruebas de Hipótesis
Diseño Estadístico y Herramientas para la Calidad
Unidad V: Estimación de
HAWKES LEARNING SYSTEMS math courseware specialists Copyright © 2010 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Capítulo 12 Más.
Estadística Administrativa II
UNIVERSIDAD INCA GARCILASO DE LA VEGA
Pronósticos, Series de Tiempo y Regresión
INTERVALO DE CONFIANZA
Inferencias con datos categóricos
DISTRIBUCIONES DE MUESTREO
Unidad V: Estimación de
ESTIMACION En varios pasajes de este libro hemos planteado la dificultad que se confronta en las investigaciones, de llegar a conclusiones sobre una población.
Curso de Bioestadística. ANOVA
ESTADÍSTICAS DESCRIPTIVA
Introducción La inferencia estadística es el procedimiento mediante el cual se llega a inferencias acerca de una población con base en los resultados obtenidos.
ESTADISTICA I CSH M. en C. Gal Vargas Neri.
Análisis Cuantitativo de Datos (Básico)
Titular: Agustín Salvia
Inferencia Estadística
TAMAÑO MINIMO DE MUESTRA PARA COMPARACIONES DE PROMEDIOS Mario Briones L. MV, MSc 2005.
Unidad V: Estimación de
Capítulo 1. Conceptos básicos de la Estadística
Pruebas de hipótesis.
COMPROBACION DE HIPOTESIS SOBRE DOS PROMEDIOS Mario Briones L. MV, MSc 2005.
Prueba de Hipótesis Subtítulo
SELECCIÓN DE UNA PRUEBA ESTADÍSTICA
Estimación y contraste de hipótesis
Taller 2 Reflexiones sobre Metodología Cuantitativa: Potencial de la comparación de muestras Germán Fromm R.
ACTIVIDAD DE PORTAFOLIOS 3
Tomando decisiones sobre las unidades de análisis
INTERVALOS DE CONFIANZA
BASES PARA EL RAZONAMIENTO EN ESTADÍSTICA INFERENCIAL
ESTIMACIÓN DE PARÁMETROS
INTERVALO DE CONFIANZA
Prueba de Hipótesis Una hipótesis estadística es un supuesto que se establece sobre las características de una distribución poblacional El estudio se plantea.
UNIDAD I.- Analisis 3.4 Prueba de Hipotesis.
CAPACITACIÓN, INVESTIGACIÓN, ESTADÍSTICA Y MERCADEO
Estimación Estadística Tares # 3. Estimación Estadística Conjunto de técnicas que permiten dar un valor aproximado de un parámetro de una población a.
MÁS DE DOS MUESTRAS Procedimientos paramétricos. Pruebas de diferencias entre más de dos muestras *Con cálculos diferentes de SC y gl, según el caso.
Yuly Vanessa Agudelo Jessy Carolina Buitrago Edwin Salazar Henao.
Tarea # 4 PRUEBAS DE HIPÓTESIS ESTADÍSTICAS. PRUEBA DE HIPÓTESIS Hipótesis es una aseveración de una población elaborado con el propósito de poner a prueba,
Estimación estadística
Viviana Acosta Estadística II. Que es Es una distribución de probabilidad que surge del problema de estimar la media de una población normalmente distribuida.
PRUEBA DE SIGNIFICANCIA
ANALISIS DE VARIANZA.
PRUEBAS ESTADISTICAS NO PARAMETRICAS. Pruebas tradicionales Necesitan la especificación de una distribución Son métodos robustos para las distribuciones.
Transcripción de la presentación:

PRUEBAS ESTADISTICAS NO PARAMETRICAS

Pruebas tradicionales Necesitan la especificación de una distribución Son métodos robustos para las distribuciones supuestas Tienen problemas con muestras de pequeño tamaño Aplicación limitada a variables cuantitativas.

Problemas de las escalas no numéricas No se puede definir cantidades. A lo más puede definirse un orden entre las categorías Esto significa que se establece un RANGO entre las observaciones. Para estos casos se han desarrollado metodos inferenciales que no requieren definición de la forma de la distribución.

Comparación de pruebas paramétricas y no paramétricas. Aplicación Prueba paramétrica Prueba no paramétrica Eficiencia de la prueba no paramétrica en relación a param. Dos muestras dependientes (datos pareados Prueba t o prueba z Prueba del signo Prueba de rangos con signos de Wilcoxon 0.63   0.95 Dos muestras independientes Prueba de suma de rangos de Mann Whitney Varias muestras independientes Análisis de varianza Prueba de Kruskal Wallis Correlación Correlación lineal Prueba de correlación de rangos 0.91

Ejemplo: Se utilizan 4 diferentes suturas en heridas experimentales en caballos y se mide, entre otras variables, el grado de reacción tisular en el periodo post operatorio (en una escala de 0 a 5 puntos).

Ejemplo: grado de reacción tisular frente a diferentes materiales de sutura.

Análisis de rangos: Las pruebas no paramétricas equivalentes al análisis de varianza y prueba de t se basan en los rangos de las observaciones en lugar de las observaciones mismas. Esta metodología utiliza información acerca de los tamaños relativos de las observaciones, sin asumir nada acerca de la naturaleza específica de la población desde donde se obtuvieron los datos.

¿Cómo elegir entre métodos paramétricos y no paramétricos? El análisis de varianza es una metodología paramétrica debido a que se basa en las estimaciones de los parámetros de dos o más poblaciones. Cuando los supuestos de los métodos paramétricos se sostienen, estas pruebas son las más poderosas.

¿Cómo elegir entre métodos paramétricos y no paramétricos? Cuando la población desde la cual fueron tomados los datos no tiene distribución normal (o no es compatible con otros supuestos como por ejemplo la igualdad de varianza entre los grupos de tratamiento), la media y la desviación estándar ya no son confiables como descriptores de la población y los métodos paramétricos dejan de ser confiables.

¿Cómo elegir entre métodos paramétricos y no paramétricos? En la práctica se pueden utilizar métodos no paramético cada vez que el tamaño de las muestras es pequeño y por lo tanto no hay garantía de que los estimadores tengan distribución normal.

Pruebas no paramétricas para compararar muestras poblaciones sobre la base de muestras independientes Prueba de Mann-Whitney Se basa en la combinación de los conjuntos de las n1 y n2 observaciones. Cuando todas las observaciones están juntas se asigna un rango a cada una de las observaciones ordenadas, que comienza en 1 y termina en n1+n2

Procedimiento Se obtiene la suma de los rangos asociados con las observaciones de una de las dos muestras. (escogida en forma arbitraria si son del mismo tamaño, en caso contrario se hace con la muestra más pequeña). Esta suma es igual a R1 El estadístico está dado por:

Ejemplo: Se sospecha que una empresa lleva a cabo una política de discriminación, con respecto al sexo, en los sueldos de sus empleados. Se seleccionaron 12 empleados masculinos y 12 femeninos de entre los que tienen responsabilidades y experiencias similares en el trabajo; sus salarios anuales en miles de dólares son los siguientes:

¿Existe alguna razón para creer que estas muestras aleatorias provienen de poblaciones con diferentes distribuciones? (alfa=0.05). Se combinan los salarios de las dos muestras para formar un solo conjunto de 24 salarios anuales. Luego se ordenan y se les asigna un rango de la siguiente manera:

Para obtener la suma de los rangos se seleccionará la muestra de mujeres. De esta forma la suma de los rangos es: 1+2+3+5+6+7+10+11+15+16+18+24=118 ns=tamaño de la muestra menor

Valores críticos para la prueba de Mann Whitney (T) - dos colas - alfa=0.05 Valores menores o iguales a los de la tabla implican rechazo de la Hipótesis nula

Aproximación normal: Cuando los valores de n1+n2 son mayores que 30

Resultado de la aproximación normal y conclusión Los datos no proporcionan evidencia suficiente para concluir que la empresa paga sueldos diferentes a hombres y mujeres (P0.05)

Prueba del signo (Wilcoxon) Se utiliza cuando las muestras no son independientes (equivalente a la prueba de t de student para muestras emparejadas. La idea básica consiste en determinar la frecuencia con la cual el valor de un miembro del par es superior al valor del otro miembro del par.

Prueba del signo Por ejemplo, si se tienen dos grupos simbolizados por A y B, cada vez que el valor de A es superior al valor de B, se asigna un valor positivo y cuando el valor de A es inferior al valor de B se asigna un valor negativo.

Prueba del signo Cuando la hipótesis nula es verdadera, deberá haber una similar cantidad o proporción de valores positivos y negativos. Es decir, si la H0 es verdadera, la probabilidad de valores positivos es 0.5

Prueba del signo La estadística para la prueba del signo, denotada por S, es el número de signos + para los n pares. Dado que bajo H0 cada par constituye un ensayo independiente con una probabilidad para el signo positivo + de 0.5, la estadística S tiene una distribución binomial con p= 0.5.

Prueba del signo Para valores grandes de n puede utilizarse la aproximación normal de la distribución binomial. Cuando ocurren empates al aplicar la prueba del signo, el procedimiento que se recomienda seguir es el de ignorarlos y emplear la prueba sólo para aquellos pares en los que no ocurren empates.

Prueba del signo Ejemplo: Se seleccionaron al azar 10 parejas de recién casados y se les preguntó por separado, tanto al marido como a la esposa, cuántos hijos deseaban tener. Se obtuvieron los siguientes datos.

Mediante el empleo de la prueba del signo, ¿existe alguna razón para creer que las esposas desean menos hijos que sus esposos? Supóngase un tamaño máximo del error tipo I de 0.05.

Nótese que deberá rechazarse H0 si el número de signos + es muy pequeño. Al restar las respuestas de cada esposo de la de su esposa, y notando que las respuestas de cinco de las parejas son las mismas, se obtienen el siguiente arreglo de signos + y -.

Signos positivos= 3

Tabla de valores críticos para la prueba del signo: La hipótesis nula se rechaza si el número de veces que se repite el signo menos frecuente (x) es MENOR O IGUAL que el valor de la tabla. 1 * 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24   VALOR DE ALFA n 0.01 0.05 25 Cuando el tamaño de los grupos es superior a 25 se utiliza la distribución normal:

Conclusión: Los datos proporcionan evidencia suficiente para concluir que las esposas desean tener un mayor número de hijos que los esposos (P<0.05).