Las rutas del conocimiento matemático

Slides:



Advertisements
Presentaciones similares
Taller Scientific Writing Torreón Coahuila México Marzo 2009.
Advertisements

Taller de Sensibilización
Etapas de la Investigación
¿Para qué escribir un reporte científico?
¿Para qué escribir un reporte científico?
Mejorar la enseñanza de matemática
U N I V E R S I D A D DE G U A D A L A J A R A Sistema de Educaci ó n Media Superior Preparatoria 14 Huentitan. Tema: Mapa Conceptual con Im á genes Presentado.
DÉJATE TENTAR POR LAS MATEMÁTICAS
PRODUCTOS DE INVESTIGACIÓN
Al describir con detalle la actividad matemática, encontramos los siguientes seis tipos de objetos: Problemas y situaciones (cuestiones, ejercicios, etc.)
Área de Matemática.
Fibonacci Leonardo de Pisa.
Mat. Juan Jiménez Krassel
Profesores: Josep María Fortuny; María Luisa Fiol
Números Irracionales ESQUEMA RECURSOS RECURSOS.
Antecedentes de la geometría
GEOMETRIA.
Euclides.
06. Algoritmo básico de la introducción
La investigación es el proceso por el cual se descubren conocimientos nuevos.
PROYECTO INTEGRADOR MATERIAL DIDACTICO GUSTAVOENGQINTO CORTES.
ESQUEMAS DE ARGUMENTACIÓN
Escribiendo y publicando un artículo
PRESENTADO POR: FERNANDO MORANTE C. ESPOL QUITO, 03 DE SEPTIEMBRE DE 2012.
Universidad Autónoma San Francisco CARRERA PROFESIONAL: Lengua, Traducción e Interpretación Asignatura: MATEMÁTICA Tema: “SISTEMA FORMAL”
Lógica y Argumentación Taller de Didáctica de la Lógica
La Investigación Científica
¿QUÉ ES UNA HISTORIA MATEMÁTICA?  Son pequeños relatos en los que intervienen elementos matemáticos, generalmente números.  Muestran las relaciones.
Rutas del conocimiento matemático
GEOMETRÍA GRADO NOVENO
TALLER EXPLICACIONES ENTRECRUZADAS. Los restos orgánicos se convierten en petróleo por que la alta presión y el calor impiden que los organismos los aprovechen.
Matemáticas y Civilización MATE-190A Curso CBU tipo A Desde los albores de la civilización hasta nuestros tiempos: hasta nuestros tiempos: La idea de número.
Universidad Tláhuac de México Profesor: Mario Reyna Alumno: Alfredo Rojas Martínez Tema: Matemáticas.
¿QUÉ SABEN DE MATEMÁTICAS LAS PERSONAS NO ALFABETIZADAS?
CALCULANDO ANGULOS DE PUNTOS INALCANZABLES
TEMA PROBLEMA ESTADO DEL ARTE. Planteamiento del plan de investigación QUÉ? Tema – POR QUÉ? Fundamentación – PARA QUÉ? Objetivos DÓNDE? Localización física.
Métodos de la geometría
Introducción a los Números Complejos
Taller de estructura argumental ¿Es lo mismo una pregunta que una cuestión? ¿Qué es una cuestión de conocimiento?
 El estudio de clases son un conjunto de actividades que pretenden mejorar las capacidades que los maestros tienen para enseñar.  Su propósito es impactar.
Funciones Continuas.
Qué significa resolver un problema?
TUTORIAL DE MATEMATICAS
22 de octubre de   ¿Hacia dónde reorientar el currículo en la Educación media superior?  ¿Qué, cómo y para qué aprender la disciplina correspondiente.
Origen de las matemáticas en el Antiguo Egipto.
CORPORACION UNIVERSITARIA DE LA COSTA CUC CALCULO DIFERNCIAL UTILIDAD DE LAS FUNCIONES MATEMATICAS EN LA INGIENERIA PRESENTADO POR: JOSE JAVIER MERCADO.
PROBLEMAS. Introducción 1Discrepancia negativa entre la situación actual y la situación deseada. 2Cuestión científica que debe resolverse.
MATEMATICOS DE LA HISTORIA
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE QUÍMICA Seminario de investigación en Ciencias de la Administración Marco Teórico TEMA 2.3.
Fecha: Tema: Orígenes y comienzos de la filosofía
Integrantes: Diana Margarita Mayerly Tatiana Yojana.
Propuesta Investigación   La efectividad de la herramienta Geogebra para analizar triángulos rectángulos en el desarrollo de destrezas trigonométricas.
El crecimiento del conocimiento cientifico
Tema 4: Aquí pondríamos el Título del tema Tema 5: Resolución de problemas Tema 5: Resolución de problemas a partir de las razones trigonométricas A+B+C=180;
GEOGEBRA EN CLASE Mg. Omar Alejandro Arce Serna Universidad del Quindío- Colombia.
El poder de los nombres ¿Qué es el nombre? Aquello a los que llamamos rosa seguirá oliendo igual de dulce con cualquier otro nombre.
El poder de los nombres África.
PRESIÓN ATMOSFÉRICA Y PRESIÓN DE GRUPO
TALLER EXPLICACIONES ENTRECRUZADAS. CONFORME GRUPOS DE CUATRO INTEGRANTES Del material recibido resuelva las interrogantes planteadas. ¿En qué medida.
@ Angel Prieto BenitoMatemáticas 1º Bachillerato CT1 U.D. 1 * 1º BCT NÚMEROS REALES.
Unidad Repaso de guías.
METODOLOGÍA Y TÉCNICAS DE INVESTIGACIÓN EN CIENCIAS SOCIALES
TEOREMAS DE EUCLIDES Y PITÁGORAS.. OBJETIVO Conocer y aplicar el teorema de Euclides y teorema de Pitágoras.
El pensamiento lógico Lección 10. Prueba lógica 1 Siga la regla: Cada tarjeta con una vocal por una cara tiene un numero par en el reverso. Estas son.
Teorema de Pitágoras MAESTRA Diana Olivia Flores Martínez UNIDAD GÓMEZ PALACIO.
Principios lógicos Los “principios lógicos” constituyen las verdades primeras, “evidentes” por sí mismas, a partir de las cuales se construye todo el edificio.
PREGUNTAS DE DISCUSIÓN Compara tus respuestas para los dos ejemplos dados y justifícalas. Los dos ejemplos son formalmente idénticos (es decir, se basan.
Componentes de un proyecto
Proyecto de profundización Texto de avance ( Aspectos de la entrega ilustrados por un ejemplo)
Las rutas del conocimiento matemático
Transcripción de la presentación:

Las rutas del conocimiento matemático taller

Investigar: en qué consiste y como se originó (Cuál fue el aporte) cada uno de los siguientes temas (autores) El ábaco El sistema decimal Ramanujan La probabilidad El cálculo El teorema de Pitágoras Omar Khayyam La teoría del caos La geometría El cero El álgebra Euclides El algoritmo La trigonometría El infinito

Taller de construcción Elabore una línea de tiempo con todos los datos adquiridos en la investigación

Preguntas de discusión ¿Puede decirse que el conocimiento matemático es el más internacional de todos los sistemas de conocimiento? ¿Difieren entre si la teoría matemática occidental y la oriental? Explique su respuesta. El desarrollo del conocimiento matemático se representa a menudo con un diagrama de un árbol (dónde la aritmética son las raíces y el tronco es el cálculo ) . Los expertos matemáticos suelen escoger el árbol de “Banyan” como el más ilustrado para ilustrar esto. ¿Cuál puede ser la razón? ¿Por qué los vastos conocimientos matemáticos en Asia son tan poco conocidos por el resto del mundo? ¿Qué supuestos pueden ser cuestionados a partir de la investigación realizada?

Conexión con otras áreas ¿Qué papel juega el razonamiento deductivo e inductivo en el conocimiento matemático? ¿Qué relación existe entre la matemática y la lógica? ¿Cómo se explica el impacto de la cultura y la política en el conocimiento matemático? ¿Qué es la verdad matemática? Las conclusiones matemáticas, ¿ tienen que ver con la verdad o con la validez?

Cita: cuando una flor nace con seis pétalos simétricos ¿está haciendo matemáticas? Philip J: Recuben Referencias bibliográficas: Davis, P. J. y Hersh, R., The Matematical Experimence, (1999) Mariner Books, ISBN 0395929687 (existe traducción al español de una edición anterior) Experiencia Matemática,(1989) M.E.C. y labor McLeish., Number(1992) Flamingo, ISBN 0006544843