Facultad de Ingeniería Maestría en Ingeniería

Slides:



Advertisements
Presentaciones similares
“AVALIAÇÃO DE GRANDES PROJETOS PÚBLICOS”
Advertisements

ANALISIS DE RIESGOS.
ANALISIS DE RIESGOS.
EVALUACION DE PROYECTOS
Fabrizio Marcillo Morla MBA
Gestión de los Riesgos del Proyecto basado en los estándares del PMI®
Investigación de Operaciones
PLANIFICACIÓN Y CONTROL DE LA PRODUCCIÓN
ESTUDIO DE MERCADO. MÉTODOS DE PROYECCIÓN
Despliegue de la Función de la Calidad “QFD”
GESTIÓN DE LOS COSTOS DEL PROYECTO
Gestión de proyectos Es la primera etapa de Ingeniería del Software.
UNIDAD I MODELOS Y TOMA DE DECISIONES
MÉTODOS DE ANÁLISIS FINANCIEROS
FUNDACIÓN UNIVERSITARIA AUTÓNOMA DE LAS AMÉRICAS
FRANCISCO JAVIER RODRÍGUEZ
Guía para la evaluación de seguridad en un sistema
RIESGOS FINANCIEROS FACULTAD DE CIENCIAS CARRERA: ING. EN CIENCIAS ECONÓMICAS Y FINANCIERAS PERIODO: Ing. Marcela Guachamín.
Ciclo de formulación del proyecto.
Cómo modelar la incertidumbre?
FUNDAMENTOS DE CONTROL
MÉTODOS Y TÉCNICAS DE INVESTIGACIÓN
Informe del presupuesto y evaluación de alternativas de inversión.
Control estadístico de Proceso
TECNICAS E INSTRUMENTOS PROSPECTIVOS
Encuestas de campo Estructuradas y semiestructuradas
Facultad de Derecho y Ciencias Políticas Carrera de Ciencias Políticas
Diseño de la investigación
ADMINISTRACION DE NEGOCIOS IV
Fundamentos de la Gerencia de Proyectos
Importancia de las aplicaciones de estadística en el control de procesos Guatemala 2010.
ANÁLISIS DE MERCADO: DEMANDA, OFERTA Y ELASTICIDADES
Distribuciones de probabilidad
ETAPAS DE LA PLANEACIÓN
Simular: Representar una cosa, fingiendo o imitando lo que no es.
ARBOLES DE DECISION.
Grupo Continental Control de Procesos.
ULACIT MAESTRÍA EN ORTODONCIA
Capacidad de Proceso.
Herramientas básicas.
CRONOGRAMA DE ACTIVIDADES.
MÉTODOS DE EVALUACIÓN DEL DESEMPEÑO
FUNDAMENTOS DE MARKETING
¿Qué es un pronóstico? Cualquier afirmación acerca de la ocurrencia o no ocurrencia de un evento,la fecha en que va a suceder algo ola intensidad de un.
Técnicas de Generación y Evaluación de Alternativas
Herramientas avanzadas. Lo primero: abrir el modelo.
MÉTODOS DE ANÁLISIS EN LA TOMA DE DECISIONES EXISTEN PROCEDIMIENTOS DE ORDEN MATEMÁTICO, FINANCIERO, ECONÓMICO, ESTADÍSTICO ENTRE OTROS, PARA LA TOMA DE.
Toma de Decisiones.
Estimación de proyectos de software
DIAGRAMA DE ISHIKAWA, O DIAGRAMA CAUSA-EFECTO
Aplicación de los conceptos Lean y Agile en la planificación de productos de consumo masivo. Doctor: Carlos Alberto Hernández Bazo Octubre del 2011.
Toma de decisiones Plataforma.
RIESGO, RENDIMIENTO Y VALOR
Proyecto de Modernización De Secretarías de Educación
Técnicas cuantitativas y cualitativas
Aplicar los conceptos y las herramientas para la administración de la calidad y gestión de riesgos del plan del proyecto. MTRA. VERÓNICA NOHEMI TAVERNIER.
Análisis de Riesgos Opciones Reales y Presupuesto de Capital
ESTADÍSTICA DESCRIPTIVA
ECACEN UNIDAD 2. LA ESTRATEGIA ORGANIZACIONAL Curso académico JUEGO GERENCIAL Cód Programa Administración de Empresas Bogotá, 2015 IR AL INICIO.
Por: Agustín Audor Julian Tole
Marco de Trabajo para Indexación, Clasificación y Recopilación Automática de Documentos Digitales Javier Caicedo Espinoza Gonzalo Parra Chico.
ALEXIS VERA LUIS VERA 5 SEMESTRE Estas herramientas nos sirven para controlar procesos, resolver problemas, tomar decisiones. Además de ser una.
Taller de investigación 1
Análisis de Riesgos Ambientales.
Coeficiente de variación
Procesos de Planeación
UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS (Universidad del Perú, Decana de América) FACULTAD DE MEDICINA - UPG MAESTRÍA EN NEUROCIENCIAS Curso: Bioestadística.
ESTADISTICA Llamada ciencia de los datos por el aporte que recibe de la matemática y el uso que hace de esta para la medición de errores. Se encarga de.
TEMA 7 ANÁLISIS DE LOS RESULTADOS TEMA 7 ANÁLISIS DE LOS RESULTADOS.
Gestión de tiempos del proyecto
Transcripción de la presentación:

Facultad de Ingeniería Maestría en Ingeniería Administración de Proyectos 2º. semestre Semestre enero-junio 2013 Análisis Cuantitativo de Riesgo M. I. José Francisco Grajales Marín

Introducción al análisis cuantitativo de riesgo Contenido Introducción al análisis cuantitativo de riesgo Comparación entre análisis cualitativo y cuantitativo Pasos para el análisis cualitativo de riesgo Herramientas de análisis Fortaleza del análisis

Enfoques del análisis de riesgo El enfoque cualitativo expresa probabilidad y/o impacto usando un sistema ordinal para denotar el orden Adjetivos: alto, medio, bajo Colores: rojo, amarillo, verde El enfoque cuantitativo expresa probabilidad y/o impacto usando datos numéricos 80 % de probabilidad de ocurrencia $10,000 de impacto 3 semanas de atraso

Análisis cualitativo de riesgo Fácil y rápido de administrar y entender a cada uno de los participantes Dificultad para hacer cumplir el cruce organización-proyecto Requiere definiciones, reglas, estándares y procesos

Análisis cuantitativo de riesgo Consume más tiempo, requiere de estimaciones Es engañoso en los números, puede aparentar precisión y especificidad Dificultad del equipo para trabajar con números Es más valioso para desarrollar estrategias de respuesta al riesgo

Análisis cuantitativo Conocer la diferencia Análisis cualitativo Análisis cuantitativo Usa una escala ordinal para expresa probabilidad/impacto Usa números para expresar probabilidad e impacto Rápido de calcular Requiere más tiempo Fácil de explicar y utilizar Trata sobre el programa y el costo del proyecto No es costoso Es costoso y consume más tiempo Es un cálculo simple Se requiere de procesador

Análisis mezcla de cualitativo y cuantitativo Utiliza cualitativo para probabilidad y cuantitativo para impacto Utiliza análisis cualitativo para algunos riesgos y análisis cuantitativo para otros riesgos

Análisis cuantitativo de riesgo La mayoría de proyectos, usualmente no necesita un análisis cuantitativo El análisis de Montecarlo sólo puede realizarse en costo y tiempo Considera otros riesgos de otras cuestiones como calidad y satisfacción del consumidor Contribución muy importante del consejo de expertos

Pasos del análisis cuantitativo Reunir la información necesaria Seleccionar riesgos del análisis cualitativo para una investigación adicional Determinar que herramientas del análisis cuantitativo emplear Seguir el procedimiento para una herramienta específica del análisis de riesgo (ver herramientas para más detalle) Determinar cuáles riesgos necesitan planeación de respuesta al riesgo Determinar costo y programa del impacto

Información para iniciar el análisis cuantitativo Sow y wbs del proyecto Plan de administración de riesgo Registro de riesgo actualizado Estimación detallada del costo Programa en detalle

Herramientas del análisis cuantitativo Entrevistas Juicio de expertos Análisis de sensibilidad Análisis de valor monetario esperado Árbol de decisión Distribución de probabilidad Simulación de Montecarlo

1. Entrevistas Reunir información necesaria para cuantificar la probabilidad y consecuencias de varios riesgos sobre los objetivos del proyecto Preguntar por el valor más bajo, el más probable y el más alto de probabilidad Preguntar si hay oportunidad de exceder estos valores y para cada uno Decidir por una distribución de probabilidad Preguntar por la media y la desviación estándar Documentar racionalmente los rangos de riesgo

Cuestiones a considerar en una entrevista Percepción Prejuicios Experiencia (debe ser relevante) Actitud hacia el riesgo Opinión subjetiva de las personas, que se forma por la información disponible para ellos

2. Juicio de expertos Es clave para el análisis cuantitativo de riesgo Utilizar a expertos para validar probabilidades (porcentajes) y confirmar las cantidades por impacto del riesgo Usar la técnica Delphi para que el experto contribuya en forma anónima Los experto pueden no estar de acuerdo con la probabilidad o el impacto del riesgo

3. Análisis de sensibilidad Técnica de un modelo determinístico para medir el impacto de un cambio en el valor de la variable independiente sobre una variable dependiente Un método para evaluar el impacto relativo de un cambio en un factor (variable) sobre los objetivos del proyecto Es también llamado análisis qué pasa sí

Análisis de sensibilidad Análisis de un factor (variable): Se realiza cambiando solo un factor (parámetro) a la vez y luego identificar el resultado Análisis de dos factores (variables): Cambiar dos factores (parámetros) a la vez. El análisis es más complejo.

Desventajas del análisis de sensibilidad No toma en cuenta la probabilidad de cambio en el factor o variable No se presta muy bien para el análisis de una combinación de dos riesgos o variables en un proyecto Sólo se aplica a riesgos que pueden ser expresados numéricamente; no se puede usar para riesgos sociales o políticos

Pasos en el análisis de sensibilidad Hacer una lista de las variables que tienen un impacto en los objetivos del proyecto Decidir cuáles son clave que necesitan ser investigados Definir el rango probable para cada variable Calcular resultados utilizando el programa Imprimir el el diagrama de sensibilidad Interpretar resultados

Consejos para el análisis de sensibilidad Asumir que los otros factores (variables) serán constantes (valor más probable) Intentar desarrollar una mejor estimación o mejorar la situación al reducir la sensibilidad del proyecto a este factor El análisis de sensibilidad no evalúa riesgos, el administrador del proyecto debe valorar la probabilidad de ocurrencia del evento (juicio de experto)

Análisis de sensibilidad Dos resultados posibles Diagrama de tornado Diagrama de araña

Diagrama de Tornado El diagrama permite a la administración de proyectos determinar cuánto del proyecto es afectado por la incertidumbre en las variables del proyecto Consiste de un conjunto de barras horizontales, una por cada factor o variable La longitud de una barra representa la variabilidad El nivel de una barra con respecto a otras, representa el riesgo relativo. Los más riesgosos están arriba

Diagrama de Tornado

Beneficios del diagrama de tornado Apoya al administrador del proyecto a centrarse en ls variables más críticas del proyecto Clasifica y prioriza las variables de acuerdo con su impacto sobre los objetivos del proyecto Objetiva cuánto del proyecto es impactado por las incertidumbres del proyecto Decide dónde se necesita invertir en esfuerzo adicional

Características del diagrama de tornado La barra más larga es la más sensible, de los objetivos del proyecto a ese factor El factor que tiene el mayor impacto se localiza arriba Los límites de la barra indican un valor bajo y alto del factor

Diagrama de Araña

Interpretación del diagrama de araña El grado de sensibilidad relativo de los objetivos del proyecto es indicado por la pendiente de la línea La línea más inclinada, es lo más sensible del proyecto al factor o variable

4. Valor Monetario Esperado (VME) Es una herramienta de la estadística para calcular un resultado promedio cuando el futuro es incierto Las oportunidades tienen valores positivos y los riesgos tienen valores negativos Se utiliza como base del Árbol de Decisión El VME es calculado multiplicando el valor de cada posible resultado por su probabilidad de ocurrencia

Ejemplo de VME Calcular el VME multiplicando el impacto por su probabilidad Calcular el VME para todos los posibles resultados y juntarlos La suma es el VME total para este escenario Repetir para cada escenario Comparar el VME para todos los escenarios

5. Árbol de decisión Es una representación gráfica del análisis de VME El árbol permite al administrador del proyecto tener un factor que representa a la probabilidad e impacto para cada rama de cada decisión bajo consideración La solución del árbol de decisión, le indica al administrador del proyecto qué decisión puede aportar el mayor valor esperado

Definición de decisión Árbol de decisión Definición de decisión Nodos de decisión Nodos de oportunidad Valor monetario Decisión Lista de opciones Escenario Probabilidad. X impacto

Construcción del árbol de decisión Comenzar con la raíz del árbol a la izquierda, ¿cuál es el objetivo o la decisión que será tomada? Decidir cuántas decisiones serán tomadas, luego crear los nodos de decisión Decidir cuántos nodos de oportunidad para cada decisión, luego ligar los nodos de decisión con los nodos de oportunidad, de izquierda a derecha en el mismo orden en que ocurran Adicionar probabilidad e impacto para los eventos a la derecha de cada decisión

Cálculo del árbol de decisión Comenzar con los nodos de decisión a la derecha Para cada resultado calcular el VME multiplicando la probabilidad por el impacto Adicionar todos los VME para cada rama Identificar el valor total esperado de las decisiones Seleccionar el mayor de los más pequeños como el aplicable

6. Distribución de probabilidad La dispersión de valores asignados a las probabilidades en una población muestra Puede ser expresada como Función Densidad de Probabilidad (FDP) Dos tipos Cerrada Abierta

Selección de la distribución aplicable El tipo de distribución puede seleccionarse en base a las condiciones que rodean a la variable En otras palabras, el administrador del proyecto debe saber cuáles de las variables pueden comportarse bajo las condiciones del proyecto Utilizar el enfoque de las cinco cuestiones

Preguntar cinco cuestiones ¿Cuál es el valor más probable, de hecho hay una que puede ser fácilmente indicada? ¿Cuál es el valor más bajo posible para esta variable? ¿Cuáles son las probabilidades de un valor menor que cierto valor más probable? ¿Cuál es el valor más alto posible para esta variable? ¿Cuáles son las probabilidades de un valor mayor que cierto valor más probable? Luego identificar la distribución aplicable

Distribución normal

Distribución normal

Distribución normal

Distribución lognormal

Distribución Triangular

Distribución Rectángular

7. Análisis de Montecarlo (AMC) Es una técnica empleada para analizar el efecto de la incertidumbre en actividades individuales y el costo sobre la fecha de terminación del proyecto o el costo total del proyecto

Ventajas de AMC Determina la cantidad de la contingencia de tiempo y costo Determina fecha más real de terminación y el costo del proyecto Considera la trayectoria de convergencia El administrador del proyecto puede describir un rango de valores posibles para cada evento en incertidumbre Apoya al administrador del proyecto a manejar las expectativas de los afectados por las actividades de la empresa, al reflejar la incertidumbre real del costo y programa del proyecto

Ventajas de AMC Toma en cuenta que parámetros inciertos puede esperarse que varíen simultáneamente (por ejemplo, corregir las debilidades en el análisis de sensibilidad) Expresa resultados sobre una distribución de probabilidad más que en un número simple, dando al que toma decisiones más información sobre en qué basar su decisión Se aplica el juicio desde el inicio en el proceso, a las variables individuales al formar su propia distribución, el análisis de Montecarlo combina estos factores de juicio, dando el peso correcto a cada uno

Desventajas del AMC Evalúa los riesgos de todo el proyecto Solo se dirige al costo y al programa La simulación evalúa al proyecto, no a actividades individuales Utiliza probabilidades subjetivas. Las considera como probabilidades matemáticas reales mientras que son sólo estimaciones La respuesta final aún depende del juicio del que toma decisiones

Desarrollo de estimación del costo y programa Dos valores (Costo/Tiempo) Valor determinístico: un valor fijo Un valor probabilístico: varía de acuerdo acierto rango

Histograma de valores vs frecuencias

Cinco pasos para un AMC Definir los recursos de capital (tiempo o costo) requerido por el proyecto para el desarrollo de la estimación del modelo determinístico Responder las cinco preguntas para cada uno Identificar la incertidumbre en la estimación de los valores posibles de las variables en la estimación de los rangos de probabilidad (Distribución de probabilidad) Analizar la estimación con simulación haciendo iteraciones con el modelo para determinar el rango y probabilidades de todos los posibles resultados del modelo Toma de decisión basado en resultados del AMC

Valores de probabilidad

Estimación

Ejemplo de un programa y AMC

Tiempo de viaje optimista, más probable y pesimista Descripción Optimista Más probable Pesimista A Maneja de Oficina a Hospital 5 7 10 B Maneja de Hospital a Universidad 13 15 C Maneja de Universidad a Gimnasio D Maneja de Gimnasio a Correo 20 25 E Maneja de Correo a Casa Tiempo total de viaje 45 65 85

Estimación de la duración del viaje

Simulación Montecarlo

Producción del análisis cuantitativo de riesgo Probabilidad de lograr los objetivos de costo Probabilidad de lograr la fecha de terminación Cálculo de contingencias del proyecto Actualizar el registro de riesgo Establecer tendencias del riesgo

Tendencias en el análisis cuantitativo del riesgo Iniciar con un AQR en la etapa de planeación del proyecto El AQR debe repetirse después de que se han determinado las respuestas al riesgo El AQR debe repetirse cada vez que se introduce un cambio