Curso Práctico de Bioestadística Con Herramientas De Excel Fabrizio Marcillo Morla MBA (593-9) 4194239.

Slides:



Advertisements
Presentaciones similares
DISEÑO DE EXPERIMENTOS EXPERIMENTOS DE COMPARACIÓN SIMPLE
Advertisements

ANOVA DE UN FACTOR.
MSP César Eduardo Luna Gurrola
PRUEBAS DE HIPÓTESIS.
Tema 16: Contraste paramétrico de hipótesis I: Pruebas de contraste para un grupo. Pruebas de contraste para dos grupos: independientes o relacionados.
Estadística Aplicada a Ecología
CONTENIDOS Teoría del muestreo ¿Cómo seleccionar una muestra?
Ejemplo Grafico.
ESTADISTICA INFERENCIAL
Inferencia estadística
Test de Hipótesis.
PRUEBA DE HIPOTESIS Denominada también prueba de significación, tiene como objetivo principal evaluar suposiciones o afirmaciones acerca de los valores.
Fabrizio Marcillo Morla MBA
Contraste de Hipótesis
PRUEBA DE HIPOTESIS LUIS FERNANDO TRUJILLO LEYDER JULIAN GOMEZ
Fco. Javier Burguillo Universidad de Salamanca
Universidad de Chile Facultad de Ciencias Químicas y Farmacéuticas
INFERENCIA ESTADISTICA
PRUEBAS DE HIPOTESIS HIPOTESIS
Prueba de Hipótesis La Prueba t Carlos B. Ruiz-Matuk.
METODOLOGÍA DE INVESTIGACIÓN Titular: Agustín Salvia
Uso de pruebas estadísticas paramétricas y no paramétricas
Curso Práctico de Bioestadística Con Herramientas De Excel
Diseño de experimentos
ANOVA Modelo I: Comparación entre medias
COEFICIENTE DE CORRELACIÓN PRODUCTO-MOMENTO DE PEARSON
Curso Práctico de Bioestadística Con Herramientas De Excel
Curso Práctico de Bioestadística Con Herramientas De Excel
Prueba de hipótesis Equivalencia entre la prueba de hipótesis y los intervalos de confianza Valor de probabilidad Valor de probabilidad unilateral Prueba.
Tests de hipótesis Los tres pasos básicos para testear hipótesis son
Clase 5 Hipótesis de diferencias de grupos
Control estadístico de Proceso
Inferencia Estadística
Unidad VI: PRUEBAS DE HIPOTESIS
Clases 4 Pruebas de Hipótesis
Diseño Estadístico y Herramientas para la Calidad
Descripción y Valuación de Puestos Fabrizio Marcillo Morla MBA (593-9) (593-9)
Estadística Administrativa II
Tema 17: Contraste paramétrico de hipótesis I: Pruebas de contraste para un grupo. Pruebas de contraste para dos grupos: independientes o relacionados.
INTERVALO DE CONFIANZA
Universidad de Chile Facultad de Ciencias Químicas y Farmacéuticas
Estadística 2010 Clase 4 Maestría en Finanzas Universidad del CEMA
ESTADÍSTICA BÁSICA EN ECOLOGÍA EVOLUTIVA Juan J. Soler Cruz Estación Experimental de Zonas Áridas Almería.
Inferencias con datos categóricos
Unidad V: Estimación de
Curso de Bioestadística. ANOVA
Análisis Cuantitativo de Datos (Básico)
Estadística Administrativa II
Análisis y diseño de experimentos
Capítulo 1. Conceptos básicos de la Estadística
Pruebas de hipótesis.
COMPROBACION DE HIPOTESIS SOBRE DOS PROMEDIOS Mario Briones L. MV, MSc 2005.
Pruebas de hipótesis.
Análisis de los Datos Cuantitativos
BASES PARA EL RAZONAMIENTO EN ESTADÍSTICA INFERENCIAL
ESTIMACIÓN DE PARÁMETROS
INTERVALO DE CONFIANZA
Prueba de Hipótesis Una hipótesis estadística es un supuesto que se establece sobre las características de una distribución poblacional El estudio se plantea.
Estadística para administradores
Aspectos generales de la investigación educativa en el SNIT
CONTRASTE DE HIPÓTESIS Dimensiones Largo275mm. 169 mm 2 Ancho175mm.49 mm 2 Alto175mm.49 mm 2 Peso16 Kg.1 Kg 2. SITUACIÓN PROBLEMA.
INFERENCIA ESTADÍSTICA
Metodología de la Investigación Cát. I
UNIDAD I.- Analisis 3.4 Prueba de Hipotesis.
RESUMEN DE LA DISTRIBUCION MUESTRAL PARA LA MEDIA MUESTRAL X INTERVALOS DE CONFIANZA PARA LA MEDIA POBLACIONAL  TIPO DE PROBLEMA ESPERANZA Y VARIANZA.
PRUEBAS DE HIPÓTESIS Y ESTIMACIÓN.  Constituyen el proceso relacionado con aceptar o rechazar declaraciones acerca de los parámetros de la población.
Tarea # 4 PRUEBAS DE HIPÓTESIS ESTADÍSTICAS. PRUEBA DE HIPÓTESIS Hipótesis es una aseveración de una población elaborado con el propósito de poner a prueba,
Bioestadística Inferencia estadística y tamaño de muestra
ANALISIS DE VARIANZA.
Evaluando los promedios de grupos distintos UNIDAD 7 1.
Transcripción de la presentación:

Curso Práctico de Bioestadística Con Herramientas De Excel Fabrizio Marcillo Morla MBA (593-9)

Fabrizio Marcillo Morla Guayaquil, Guayaquil, BSc. Acuicultura. (ESPOL 1991). BSc. Acuicultura. (ESPOL 1991). Magister en Administración de Empresas. (ESPOL, 1996). Magister en Administración de Empresas. (ESPOL, 1996). Profesor ESPOL desde el Profesor ESPOL desde el años experiencia profesional: 20 años experiencia profesional:  Producción.  Administración.  Finanzas.  Investigación.  Consultorías. Otras Publicaciones del mismo autor en Repositorio ESPOL

Capitulo 4 Estadistica Comparativa

La estadística comparativa es aquella parte de la estadística que se propone comparar dos o mas poblaciones. Existen algunas herramientas para hacer comparaciones. La estadística comparativa es aquella parte de la estadística que se propone comparar dos o mas poblaciones. Existen algunas herramientas para hacer comparaciones. Las mas conocidas son las pruebas de hipótesis y el análisis de varianza, pero existen muchas más. Las mas conocidas son las pruebas de hipótesis y el análisis de varianza, pero existen muchas más.

Pruebas de Hipotesis Hipótesis estadística a una asumción sobre una población que está siendo muestreada. Hipótesis estadística a una asumción sobre una población que está siendo muestreada. Test hipótesis simplemente una regla mediante la cual esta hipótesis se acepta o se rechaza. Test hipótesis simplemente una regla mediante la cual esta hipótesis se acepta o se rechaza. Regla basada generalmente en un estadístico muestreal llamado estadístico de prueba, ya que se lo usa para probar la hipótesis. Regla basada generalmente en un estadístico muestreal llamado estadístico de prueba, ya que se lo usa para probar la hipótesis. La región crítica de un estadístico de prueba consiste en todos los valores del estadístico donde se hace la decisión de rechazar H0 La región crítica de un estadístico de prueba consiste en todos los valores del estadístico donde se hace la decisión de rechazar H0

Debido a que las pruebas de hipótesis están basadas en estadísti­cos calculados a partir de n observaciones, la decisión tomada está sujeta a posibles errores. Debido a que las pruebas de hipótesis están basadas en estadísti­cos calculados a partir de n observaciones, la decisión tomada está sujeta a posibles errores. Si rechazamos una hipótesis nula verdadera, estamos come­tiendo un error de tipo I. La probabilidad de cometer un error del tipo I se llama . Si rechazamos una hipótesis nula verdadera, estamos come­tiendo un error de tipo I. La probabilidad de cometer un error del tipo I se llama . Si aceptamos una hipótesis nula falsa, estaremos cometiendo un error del tipo II, y la probabilidad de cometerlo se la denomina . Si aceptamos una hipótesis nula falsa, estaremos cometiendo un error del tipo II, y la probabilidad de cometerlo se la denomina .

Uno de los objetivos de las pruebas de hipótesis es diseñar tests en donde  y  sean pequeños, pero la mayor ventaja que nos dan las pruebas de hipótesis es precisamente esto: Poder medir  y , de tal forma que nosotros podamos medir la incertidumbre, remplazando palabras vagas como "pudo" "tal vez" posiblemente" que nosotros ponemos al "ojímetro" por un número que denota cuanto es la posibilidad de equivocarnos. Uno de los objetivos de las pruebas de hipótesis es diseñar tests en donde  y  sean pequeños, pero la mayor ventaja que nos dan las pruebas de hipótesis es precisamente esto: Poder medir  y , de tal forma que nosotros podamos medir la incertidumbre, remplazando palabras vagas como "pudo" "tal vez" posiblemente" que nosotros ponemos al "ojímetro" por un número que denota cuanto es la posibilidad de equivocarnos.

Para probar una hipótesisla expresamos en su forma nula (H0), y formulamos una hipótesis a¬terna (H1) que aceptaremos al rechazar H0. Para probar una hipótesisla expresamos en su forma nula (H0), y formulamos una hipótesis a¬terna (H1) que aceptaremos al rechazar H0.  Poner de tal forma que no haya diferencias. Debe de ser una hipótesis simple, por ejemplo: Debe de ser una hipótesis simple, por ejemplo:  "No hay diferencia entre las medias"  "La media de la población es igual a 10"  "Los caracteres son independiente"  "Las varianzas son homogéneas(iguales)“ Ambas hipótesis deben ser distintas y mutuamente excluyentes. Ambas hipótesis deben ser distintas y mutuamente excluyentes.

Queremos saber si dos poblaciones, una con peso promedio de muestreo 14.0 g y otra con 15.0 g tienen igual media de peso. Queremos saber si dos poblaciones, una con peso promedio de muestreo 14.0 g y otra con 15.0 g tienen igual media de peso.  "14.0 no es lo mismo que 15.0“.  Cuando son iguales entonces?  Cuando 1ª piscina pesa 14.2? 14.5g ? 14.8? 14.9? 14.99? porque no 14.85? o ?. Esto no lo podemos saber al ojo o por "feeling“ Esto no lo podemos saber al ojo o por "feeling“ Método estadístico dice si son o no diferente con un (1-  )x100% de confianza. Método estadístico dice si son o no diferente con un (1-  )x100% de confianza.

% de confianza (1-  ) x 100 %: % de confianza (1-  ) x 100 %:  % confianza de no estar cometiendo un error tipo I  Si repetimos infinitamente el experimento, al menos este % de veces nos daría el mismo resultado. Y el área crítica(W) es el área de la curva en donde H0 va a ser rechazada en  x100% de las veces. Y el área crítica(W) es el área de la curva en donde H0 va a ser rechazada en  x100% de las veces.

El valor de  al cual decidimos nosotros aceptar o rechazar H0 va a depender únicamente de nosotros, que tanto deseamos estar seguros de no equivocarnos. Si el resultado de equivocarme va a resultar en que Yo me muera me inclino por valores de  bajos ( ), si el resultado de equivocarme va a resultar en que a mi perro le salgan canas me iría por un valor mas alto (x ej.  =0.1). En general se usan valores entre 0.1 y 0.01, siendo el mas común el de El valor de  al cual decidimos nosotros aceptar o rechazar H0 va a depender únicamente de nosotros, que tanto deseamos estar seguros de no equivocarnos. Si el resultado de equivocarme va a resultar en que Yo me muera me inclino por valores de  bajos ( ), si el resultado de equivocarme va a resultar en que a mi perro le salgan canas me iría por un valor mas alto (x ej.  =0.1). En general se usan valores entre 0.1 y 0.01, siendo el mas común el de 0.05.

Pasos 1. Expresar claramente la hipótesis nula (H0) y su alterna (H1) en los libros para pruebas más comunes. 2. Especificar el nivel de significancia  y el tamaño de la muestra (n),  generalmente 0.05 ó Escoger estadístico para probar H0 (libros), ojo con asumciones y restricciones que involucra 4. Determinar distribución muestreal estadístico cuando H0 es verdadera (libros) 5. Designar región crítica donde H0 va a ser rechazada en 100 x  % de muestras cuando es verdadera (formula en libros)

Pasos 6. Escoger muestra(s) aleatoria(s) de tamaño n, (proceso mecánico). Medir variable de interes. 7. Calcular estadístico de prueba: remplazar datos obtenidos en la fórmula del libro (calculadora o PC). 8. Comparar el estadístico calculado con el teórico y decidir con base en resultado y guiándonos por la zona crítica o de rechazo si: a) Aceptamos H0. b) Rechazamos H0 (y aceptamos H1). c) No tomamos ninguna decisión (si pensamos que los datos no son concluyentes).

Pruebas De Una Poblacion Empezaremos con las pruebas unimuestrales en las que tratamos de probar si un parámetro calculado a partir de un estadístico es igual o no a un valor predeterminado o a un parámetro poblacional conocido. Empezaremos con las pruebas unimuestrales en las que tratamos de probar si un parámetro calculado a partir de un estadístico es igual o no a un valor predeterminado o a un parámetro poblacional conocido. Estudiaremos cuatro pruebas en este capítulo: Estudiaremos cuatro pruebas en este capítulo:  Una media con varianza conocida (Excel)  una media con varianza desconocida  una varianza  una proporción

Una media con varianza conocida (Excel)  =1-ABS(PRUEBA.Z(Rango,  ))  =1-ABS(PRUEBA.Z(Rango,  ))  Devuelve el valor de  para una cola  H 1 :   Si es menor que  esperado rechazamos H 0  Rango: la muestra (n>30)   : La media con la que se quiere comparar  Equivale a:  =DISTR.NORM.ESTAND(-ABS(  x-  /√n))) Para dos colas Para dos colas  H1    =(1-ABS(PRUEBA.Z(Rango,  )))*2

Una media con varianza conocida (Excel) =ABS(PRUEBA.Z(Rango,  ) =ABS(PRUEBA.Z(Rango,  )  1-  (rechazo cuando es mayor) =1-ABS(PRUEBA.Z(Rango,  )) =1-ABS(PRUEBA.Z(Rango,  ))   (rechazo cuando es menor) =DISTR.NORM.ESTAND(-ABS(  x-  /√n))) =DISTR.NORM.ESTAND(-ABS(  x-  /√n)))   (rechazo cuando es menor) =(1-ABS(PRUEBA.Z(Rango,  )))*2 =(1-ABS(PRUEBA.Z(Rango,  )))*2   (rechazo cuando es menor)

Caso General Z Calculo Z muestra a mano Calculo Z muestra a mano Probabilidad  Probabilidad   Rechazo cuando es menor   =DISTR.NORM.ESTAND(-ABS(Z))  1 Cola   =(DISTR.NORM.ESTAND(-ABS(Z)))*2  2 Colas Región de Rechazo: Z (p) ; p=  ; p=  /2 Región de Rechazo: Z (p) ; p=  ; p=  /2  Rechazo cuando entra en región. (depende H 1 )  =DISTR.NORM.ESTAND.INV(p)

Dos Poblaciones Independientes Llamadas también pruebas bimuestreales, son usadas cuando queremos comparar dos estadísticos poblacionales calculados a partir de muestras de esas poblaciones. Llamadas también pruebas bimuestreales, son usadas cuando queremos comparar dos estadísticos poblacionales calculados a partir de muestras de esas poblaciones. En este capítulo estudiaremos cinco casos: En este capítulo estudiaremos cinco casos:  dos varianzas independientes,  dos medias independientes con varianzas conocidas  dos medias independientes con varianzas desconocidas e iguales  dos medias independientes con varianzas desconocidas y desiguales  dos proporciones.

Prueba F para 2 varianzas Para diferencias  Para > o o <  =PRUEBA.F(Rango1,Rango2) =PRUEBA.F(Rango1,Rango2)  1-  (rechazo cuando es mayor) =1-PRUEBA.F(Rango1,Rango2) =1-PRUEBA.F(Rango1,Rango2)   (rechazo cuando es menor) =DISTR.F(F,    )*2 =DISTR.F(F,    )*2   (rechazo cuando es menor)    

Caso General F Calculo F a mano Calculo F a mano Probabilidad de a Probabilidad de a  a=DISTR.F(F,    )  1 cola Región de Rechazo: F (p) ; p=  ; p=  /2 Región de Rechazo: F (p) ; p=  ; p=  /2  Rechazo cuando entra en región. (depende H 1 )  =DISTR.F.INV(p,    )

Prueba t para 2 Medias =PRUEBA.T(matriz1;matriz2;colas;tipo) =PRUEBA.T(matriz1;matriz2;colas;tipo)  Devuelve a (rechazo cuando es mayor)  En 1 cola va de 0 a 0.5. Solo evalua mayor.  En 2 colas va de 0 a 1.  Matriz 1 y Matriz 2 son datos de mi muestra  # Colas depende de H1; ≠: 2; : 1  Tipos:  1: Muestras pareadas  2: Varianzas iguales  3: Varianzas desiguales

Pruebas en Muestras Dependientes

Tablas de Contingencia

Bondad de Ajuste

Análisis De Varianza Generalidades y asumciones Generalidades y asumciones Diseño experimental del ANOVA Diseño experimental del ANOVA

ANOVA de 1 via

Pruebas multiples

ANOVA de 2 Vias

ANOVA Multifactorial

Uso de la regresión lineal para comparaciones de dos variables cuantitativas

Datos Atipicos

Analisis De Covarianza