Fisica Atómica y Molecular en la Medicina (Formulas & Ejercicios) Dr. Willy H. Gerber Comprender como se comportan los sistemas de moléculas y como estas.

Slides:



Advertisements
Presentaciones similares
La física moderna y el átomo
Advertisements

EL ÁTOMO DE BOHR – historia del átomo
MODELO ATÓMICO DE BOHR Javier Ricardo Velandia Cabra
3.1 Fisica Atómica y Rayos X
3.1 Fisica Atómica y Rayos X (Formulas & Ejercicios)
Mecánica Cuántica Efecto Fotoelectrico Relatividad Modelos Atomicos.
Fisica en la Odontologia Formulario
Fisica en la Medicina Formulario
Hidrodinámica en la Medicina (Formulas & Ejercicios)
Fisica Atómica y Molecular en la Medicina
Fisica Atómica y Molecular en la Medicina (Formulas & Ejercicios)
ATOMO DE BOHR JAVIER DE LUCAS.
ATOMO DE BOHR JAVIER DE LUCAS.
TEORIA CINETICA DE GASES
Modelo Mecano cuántico
ESPECTROS ATÓMICOS.
Modelo Mecano-Cuántico
Modelo atómico de Bohr.
Estructura de la materia. Introducción a la Química moderna.
EJERCICIOS Se infla un globo con 1.5 litros de helio a 560 mm de Hg. Si el globo se eleva hasta alcanzar una altura donde la presión es de 320 mm Hg, Cuál.
MODELO ATÓMICOS DE BOHR
Practica Energía y Potencia en la Kinesiología – Ejercicios
RADIACIÓN ELECTROMAGNETICA Y ELECTRONES
ONDAS ELECTROMAGNETICAS
FISICA CUANTICA FISICA CUÁNTICA.
Estructura Atómica Mecanica Cuántica y Estructura Atómica
Modelos atómicos.
NATURALEZA ELECTROMAGNETICA DE LA MATERIA
Estructura de la materia
EL ÁTOMO CUÁNTICO Basado en el trabajo del Prof. Víctor Batista
FÍSICA CUÁNTICA.
ESTRUCTURA ELECTRONICA DE LOS ATOMOS
Termodinámica.
Termodinámica en la Medicina (Formulas & Ejercicios)
El Estado Gaseoso y sus Leyes
Modelo atómico de Bohr h rn = n 2mv
Mecanocuántico del Átomo
Fisica Atómica y Molecular en la Medicina Dr. Willy H. Gerber Comprender como se comportan los sistemas de moléculas y como estas se constituyen sobre.
Estructura de la materia La Química y su didáctica IV Dr. Víctor Manuel Ugalde Saldívar.
Sesión 4 Estructura atómica, configuraciones electrónicas, diagramas de orbitales, números cuánticos y principio de exclusión de Pauli. Dr. Marcos Flores.
Santiago Antúnez de Mayolo
Modelo atómico actual.
Fundamentos de Física Moderna Modelos Atómico de Bohr para el átomo de hidrógeno Nombre: Camilo Andrés Vargas Jiménez G2E32Camilo- 10/06/2015.
Germán David Sierra Vargas
Ross Alejandra Silva Torres Ingeniería eléctrica física moderna
Ciencias Físicas 4.
UNIVERSIDAD NACIONAL DE COLOMBIA SEDE BOGOTÁ
FÍSICA DE SEMICONDUCTORES Modelos Atómicos
Presentado por: Andrés Camilo Vargas Páramo G2E
Fundamentos de Física Moderna – Modelo Atómico de Bohr
Universidad Nacional de Colombia Departamento de Física   Asignatura Física de Semiconductores     Tarea No 5 Modelos Atómicos   Profesor: Jaime Villalobos.
NIVELES DE ENERGIA. Para poder entender los niveles de energía debemos de comprender un poco el modelo atómico de Bohr.
MODELO ATÓMICO DE BOHR G1E15Oscar Oscar Javier Mora Gil
FÍSICA DE SEMICONDUCTORES Modelos Atómicos
Andrés Camilo Suárez Leaño 17/06/2015
UN Sergio Toledo Cortes G2E FUNDAMENTOS DE FÍSICA MODERNA PERSONAJES.
Universidad Nacional de Colombia Álvaro Antonio Baena Rubio G1E3Alvaro.
Universidad Nacional de Colombia Departamento de Física Asignatura Física de Semiconductores Tarea No 5 Profesor: Jaime Villalobos Velasco Estudiante:
UN JUAN F. QUINTERO DUARTE G2E26.  Los electrones describen órbitas circulares en torno al núcleo del átomo sin irradiar energía. La causa de que el.
Física Cuántica Durante el siglo XIX, diversos físicos trataron de comprender el comportamiento de los átomos y moléculas a partir de las leyes físicas.
UN Luis Alfredo Gutiérrez payanene -g1e12luis
Presentación # 5 Jorge Leonardo Barbosa R. Código: Grupo 12 – NL 06.
Física Cuántica.
Modelos atómicos hasta el actual
Jhoan Manuel Martínez Ruiz Universidad Nacional de Colombia
PROFESOR CRISTIAN LEDEZMA CARVAJAL
QUIMICA CUANTICA QUIMICA CUANTICA: INTRODUCCION
1º BTO LA MATERIA.
* Series espectrales de emisión del
Tema 2. Física cuántica Resumen.
Transcripción de la presentación:

Fisica Atómica y Molecular en la Medicina (Formulas & Ejercicios) Dr. Willy H. Gerber Comprender como se comportan los sistemas de moléculas y como estas se constituyen sobre la base de la estructura de los átomos. Objetivos: – UACH-Fisica-Atomar-y-Molecular-en-la-Medicina-Versión 05.08

Gas - Energía de translación de una partícula 2 – UACH-Fisica-Atomar-y-Molecular-en-la-Medicina-Versión Masa de la partícula [kg] Velocidad (vector) y sus componentes [m/s] Promedio de la velocidad al cuadrado de las partículas Promedio de la Energía cinética [J = kg m 2 /s 2 ] Densidad de partículas [#/m 3 o Mol/m 3 ] (1 Mol = 6.02x10 23 Partículas = N A – Numero de Avogadro)

Gas - Impulso transmitido a una pared 3 – UACH-Fisica-Atomar-y-Molecular-en-la-Medicina-Versión Impulso (vector) y sus componentes [kg m/s] Pared

Gas - Flujo de partículas hacia la pared 4 – UACH-Fisica-Atomar-y-Molecular-en-la-Medicina-Versión A En un tiempo Δt la mitad (1/2) de las partículas que están en un volumen de base A y altura v x Δt alcanzaran la pared (flujo):

Gas – Presión calculada microscópicamente 5 – UACH-Fisica-Atomar-y-Molecular-en-la-Medicina-Versión El impulso promedio ejercida en el tiempo Δt sobre una sección A de la pared será: Como La presión sobre la pared será: pNVpNV Presión [Pa = N/m 2 ] Numero de partículas [-] Volumen [m 3 ] y

Gas – relación con la temperatura 6 – UACH-Fisica-Atomar-y-Molecular-en-la-Medicina-Versión De la termodinámica tenemos la ecuación de estado de los gases k Constante de Boltzmann (no confundir con constante de Stefan-Boltzmann) (1.38x m 2 kg/s 2 K) nmRTnmRT Numero de moles [mol] Constante universal de gases (8.314 J mol -1 K -1 ) Temperatura absoluta [°K]

Gas – generalización en función de grados de libertad 7 – UACH-Fisica-Atomar-y-Molecular-en-la-Medicina-Versión grados de libertad 5 grados de libertad ej. H 2, N 2 Para f grados de libertad: 6 grados de libertad ej. H 2 O, CO 2 Adicionalmente a mayores energías existen grados de libertad asociados a las vibraciones de los enlaces (2 x enlace).

Gas – Calor especifico de gases 8 – UACH-Fisica-Atomar-y-Molecular-en-la-Medicina-Versión Para gases bajo condiciones de volumen se tiene que por mol: o sea Ejemplo para moléculas di-atómicas f = 3 f = 5 f = 7 traslación rotación vibración 7R/2 5R/2 3R/2 CVCV T

Gas - Camino libre 9 – UACH-Fisica-Atomar-y-Molecular-en-la-Medicina-Versión d l Camino libre [m] d

Gas - Viscosidad 10 – UACH-Fisica-Atomar-y-Molecular-en-la-Medicina-Versión Transmisión de impulso

Gas - Conductividad 11 – UACH-Fisica-Atomar-y-Molecular-en-la-Medicina-Versión Transmisión de impulso T2T2 T1T1

Interacción entre partículas – Ecuación de van der Waals 12 – UACH-Fisica-Atomar-y-Molecular-en-la-Medicina-Versión d r

Ecuación de van der Waals y el cambio de estado 13 – UACH-Fisica-Atomar-y-Molecular-en-la-Medicina-Versión b V p Liquido/solido (efecto a y b clave) Gas (efecto a y b despreciable) Cambio “sin sentido”

El espectro atómico – UACH-Fisica Molecular y Atomar en la Medicina-Versión Espectro de absorción Espectro de emisión Líneas espectrales Largo de onda [m] Frecuencia [Hz] Velocidad de la luz [m/s] (3.00x10 8 m/s) Energía de un fotón [J] Constante de Planck [Js] (6.63x Js) λνcEhλνcEh

Electrón en un átomo o molécula 15 – UACH-Fisica Molecular y Atomar en la Medicina-Versión La energía del orbital es calculada con la ecuación de Bohr que modela el átomo como un sistema de electrones rotando en torno a un núcleo. Enemhε0nEnemhε0n Energía en el orbital n [J o eV; 1 eV = 1.59x J] Carga del electrón (1.6x C) Masa del electrón (9.11x kg) Constante de Planck (6.63x Js) Constante de Campo (8.85x C 2 /Nm 2 ) Numero cuántico principal l = 0, 1, 2, … n – 1 m = -l, -l+1, …,l-1,l s = - ½, ½ Niels Bohr ( ) Aun que el modelo es incorrecto, entrega valores que concuerdan con los medidos para el átomo de hidrogeno. Para los demás átomos y moléculas existen correcciones. Bohr describe los restantes números cuánticos como deformaciones de la orbita.

Electrón en un átomo o molécula 16 – UACH-Fisica-Atomar-y-Molecular-en-la-Medicina-Versión Para describir un átomo con los paquetes de onda se observa algo curioso: existen solo algunas orbitas posibles para los electrones. Esto se debe a que las funciones deben ser cíclicas (postulado de De Broglie): Hoy lo entendemos pero cuando se realizaron los modelos iníciales simplemente se enuncio que el electrón se movía (partícula) en orbitas bien definidas y que las demás orbitas están prohibidas.

Relación de incertidumbre de Heisenberg 17 – UACH-Fisica-Atomar-y-Molecular-en-la-Medicina-Versión El paquete de ondas esta compuesto de distintas ondas con un impuso que varían en Δp en tormo de un valor medio. El modelo de función de onda resulta en dos inecuaciones de incerteza en la medición de posición, impulso, energía y tiempo. Esta insertes es propia de los sistemas y no puede ser eliminada con equipos de mayor precisión. Werner Heisenberg ( )

MRI 18 – UACH-Fisica-Atomar-y-Molecular-en-la-Medicina-Versión También en la moléculas existe el efecto Zeeman. En base a este se puede determinar el tipo de moléculas y la cantidad en una muestra Decaimiento espontaneo Cambio forzado B hγBhγB Constante de Planck (1.054x Js) [Js] Radio giro magnético (1.76x /Ts) [1/Ts] Campo magnético [T]

Ejercicios 19 – UACH-Fisica-Atomar-y-Molecular-en-la-Medicina-Versión Si la presión del aire es de kPa donde el 80% de los moles corresponde a Nitrógeno y el 20% a Oxigeno, cuantos moles hay de cada gas a 20°C? ( mol, mol) 2.Que presión (parcial) genera cada uno de los gases? (86.96 kPa, kPa) 3.Que densidad tiene el aire si el peso del Nitrógeno es 14 g/mol y del Oxigeno es 16 g/mol? Recuerde que en el gas ambos elementos existen en forma de moléculas N 2 y O 2 ?. (1.200 kg/m 3 ) 4.Cual es la energía de una molécula de N 2 y O 2 si se asume que a 20C tienen 5 grados de libertad? (1.01x J, 1.01x J) 5.Cual es la velocidad promedio de una molécula de N 2 y una de O 2 ? ( m/s, m/s) 6.Cual es el camino libre de cada una molécula de aire si se supone que los radios del nitrógeno y oxigeno son iguales a 1.54x m y el numero de moles es el del aire calculado en 1? Indique además el camino libre en función del radio de la molécula. (9.49x10 -8 m, ) 7.Si se asume una masa y velocidad promedio de las moléculas N 2 y O 2 como 4.78x kg y m/s, cual seria la viscosidad del aire? (2.463x10 -5 Pa s) 8.Que valor asume para los parámetros definidos en 7 la constante de conducción térmica? 1.799x10 -2 J/m 2 s) 9.Cual es el valor del factor constante en la formula para el calculo de la energía de los orbitales de un átomo? (13.6 eV)

Ejercicios 20 – UACH-Fisica-Atomar-y-Molecular-en-la-Medicina-Versión Cual es la energía de los primeros orbitales según el modelo de Bohr? (-13.6 eV, -3.4 eV, eV) 11.Cual es la energía que debe emitir como luz un electrón que salta del tercer al primer nivel? (12.09 eV) 12.A que frecuencia de luz corresponde el fotón emitido para la energía liberada según el ejercicio 11? (2.91x Hz) 13.A cual largo de onda corresponde un fotón que es emitido desde el primer orbital? (9.17x10 -8 m) 14.Según De Broglie a que radio del orbital correspondería el largo de onda calculado en 13? (1.46x10 -8 m) 15.Si se toma el radio calculado en 14 como la incerteza de la posición del electrón en el átomo, cual seria la incerteza del impulso y de la velocidad según la relación de incertidumbre de Heisenberg? (3.62x kg m/s, 3.97x10 3 m/s) 16.En el caso de la segunda relación de Heisenberg el ancho de la línea espectral (ΔE) es una medida del tiempo que puede permanecer en dicho estado. Si se determinara que el ancho de la línea es de eV, cuanto tiempo en promedio se queda el electrón en este estado? (3.31x10 4 s) 17.Si en un equipo de resonancia magnética nuclear se aplica un campo magnético de 1 Teslar y se generan emisiones de fotones por efecto de saltos entre los niveles del split (división) en el espectro, que frecuencia tendrían? (5.6x10 10 Hz)

Resultados 21 – UACH-Fisica-Atomar-y-Molecular-en-la-Medicina-Versión p=101.2 kPa =1.012x10 8 Pa => pV=nRT => n=pV/RT => con V=1m 3, T=20°C =293.15°K => n=41.52 mol/m 3 N 2 : 80% => 0.8*41.52 mol/m 3 = mol/m 3 O 2 : 20% => 0.2*41.52 mol/m 3 = 8.3 mol/m 3 2.p=101.2 kPa =1.012x10 8 Pa => N 2 : 80% => 0.8*101.2 kPa = kPa, O 2 : 20% => 0.2*101.2 kPa = kPa 3.N 2 : 14 g/mol=0.014 kg/mol=> mol/m kg/mol = 0.93 kg/m 3 O 2 : 16 g/mol=0.016 kg/mol => 8.3 mol/m kg/mol = kg/m 3 Densidad total = 0.93 kg/m kg/m 3 =1.200 kg/m 3 4.E=fkT/2 =>T=20°C =293.15°K, f=5=>E=1.01x J en ambos casos. 5.mv2/2=fkT/2=>v=√fkT/m N 2 : 14 g/mol=0.014 kg/mol=> mol/m x /mol=4.65x kg O 2 : 16 g/mol=0.016 kg/mol => 8.3 mol/m x /mol=5.32x kg N 2 : m/s O 2 : m/s 6.L=1/√2 πd 2 n => r= 1.54x m, n=41.52 mol/m 3 =>L=9.49x10 -8 m, L/r= η=1/3 nml√ =>m= 4.78x kg, √ = m/s=> η = 2.463x10 -5 Pa s 8.λ=1/6 fknl√ =>f=5, n=41.52 mol/m 3, √ = m/s=> λ= 1.799x10 -2 J/m 2 s 9.R=e 4 m/8ε 0 2 h 2 =2.17x J=13.6 eV 10.R/1 2 =-13.6 eV, R/2 2 =-3.4 eV, R/3 2 =-1.511eV 11.dE =E 3 -E 1 = eV-(-13.6eV)=12.09eV

Resultados 22 – UACH-Fisica-Atomar-y-Molecular-en-la-Medicina-Versión E=hν=>ν=E/h => E=12.09eV=1.927x J=> ν= 2.91x Hz 13. c=λν=>λ=c/ν= 9.17x10 -8 m 14. 2πr=n λ, n=1=>r= λ/2π= 1.46x10 -8 m 15. r=Δx=>Δp=h/2 Δx =>Δp =3.62x kg m/s, Δp=mΔv => m =9.11x kg Δv=Δp/m = 3.97x10 3 m/s 16. ΔE= eV=1.59x J=> Δt=h/2 ΔE= 3.31x10 4 s 17. ΔE=hγB=>ν=E/h=2ΔE/h= 5.6x10 10 Hz