Asociación Universidad Privada San Juan Bautista

Slides:



Advertisements
Presentaciones similares
TEMA 2 2DA PARTE ESTEQUIOMETRÍA.
Advertisements

Tema 2.- Magnitudes y Unidades
Sistema Internacional (SI)
MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE
Data/Información Medible
La Física y sus mediciones
Fuerza y movimiento.
(1° medio) Introducción a la Física Física
El sistema internacional de unidades
Unidad Didáctica Metrología e instrumentos de medida
Sistemas de Ecuaciones
Unidad Didáctica 4: Aritmética IV Unidad didáctica 4, Parte 1.
SISTEMA INTERNACIONAL DE UNIDADES
Oscar René Pineda Laverde – G12N
Sistema Internacional de unidades Fernández Alonso Iván
A Concepto de energía eléctrica
CANTIDAD + UNIDAD DE MEDIDA EL SISTEMA MÉTRICO DECIMAL
SISTEMA INTERNACIONAL Técnicas Experimentales - Tema 4
La transformada de Laplace
SISTEMA INTERNACIONAL DE UNIDADES SI
Tema 2.- Magnitudes y Unidades
Systems of measurement
UNIDADES FUNDAMENTALES
Sistema Internacional de Unidades
6 Sesión Contenidos: Unidades de medida Magnitudes básicas.
I. La Física Salir 1. ¿Qué es la Física? 2. Aplicaciones de la Física 3. Magnitudes 4. Errores de medida 5. Notación científica 6. Pregunta curiosa.
¿Qué es medir? Objetivo: Identificar las unidades de medida del sistema internacional (SI)
CARACTERISTICAS DEL SI
SUCESIONES Y PROGRESIONES.
CUPES L Ciencias experimentales Unidad 1. Medición
Calibrador vernier.
ELECTRICIDAD.
Tema 2.- Magnitudes y Unidades
LAS MAGNITUDES FÍSICAS Y SU MEDIDA
MAGNITUDES Identifica magnitudes que se usan en una tienda: masa, nº de huevos, capacidad, superficie, precio.
MAGNITUDES FUNDAMENTALES
FISICA Objetivo general: El estudiante explicará los conceptos generales de Física, con la finalidad de valorar las características de cada uno en los.
UNIVERSIDAD INTERAMERICANA DE PUERTO RICO RECINTO DE GUAYAMA
La física como ciencia de la medición
Tema 2.- Magnitudes y Unidades
Sistema Internacional
Prof. Rodrigo Riquelme Colegio Humberstone
es un instrumento utilizado para medir dimensiones de objetos relativamente pequeños, desde centímetros hasta fracciones de milímetros (1/10 de milímetro,
UNIDADES DE MEDIDA Unidad de longitud: (m) Unidad de masa: (Kg)
Mónica Sarahí Ramírez Bernal A IIS 11 Capitulo 1
UNIDADES DE MEDIDA Docente: Jorge Balseca Q.
CUANTIFICANDO LA REALIDAD
FISICA Biología 108.
EL SISTEMA INTERNACIONAL DE UNIDADES
1. La medición. Magnitudes y unidades
Ing. Robin Anguizaca Fuentes
LAS HERRAMIENTAS DE LA FÍSICA
MAGNITUDES, UNIDADES Y FACTORES DE CONVERSION
CONCEPTOS BÁSICOS DE METROLOGÍA
Sistema Internacional (SI)
EA – Evaluación parcial EB – Evaluación final
CARACTERISTICAS DEL SI
REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA UNEFA.
Resultado 1.1 con actividad 1.1.1
Sistemas de Medidas Sra. Vega Blasini.
SISTEMAS DE UNIDADES En física tanto las leyes como las definiciones relacionan entre sí grupos de magnitudes. Por ello es posible seleccionar un conjunto.
La metrología es una disciplina muy relevante para otras áreas del conocimiento ya que da las bases para que el trabajo realizado por cada una de estas.
Ing. Robin Anguizaca Fuentes
Tema: Sistemas de Medidas y Conversiones
PATRONES CLÁSICOS Y CUÁNTICOS G11N23NestorIsaac. Por que patrones cuánticos?  Se usan este tipo de patrones, dado a su mayor precisión y el principio.
Creado por: Sandra Vega para curso Ciencias Terrestres 9no
 En un altísimo porcentaje, el ingeniero mide más que cuenta: mide tiempos, longitudes, volúmenes, fuerzas, energía y otras variables  Para expresar.
MULTIVERSIDAD LATINOAMERICANA CAMPUS TLAJOMULCO
Historia de las Magnitudes y Unidades Magnitud: Propiedad o Cualidad que es susceptible de ser medida y por lo tanto puede expresarse cuantitativamente.
UNIDAD DE APRENDIZAJE Nº1
Transcripción de la presentación:

Asociación Universidad Privada San Juan Bautista Curso: Biofísica Médica Tema: Magnitudes y medidas Campo Santo de Yungay, al fondo el imponente Huascarán Dr. Marco A. Castro Márquez Facultad de Ciencias de la Salud Escuela Profesional de Medicina Humana 09/04/2017

Tema 1 Magnitudes y Unidades Magnitud: Propiedad o Cualidad que es susceptible de ser medida y por lo tanto puede expresarse cuantitativamente. Unidades o Sistema de Unidades: Conjunto de referencias (Unidades) elegidas arbitrariamente para medir todas las magnitudes. 09/04/2017

El ser Humano por naturaleza se empeña en medir, definir, comparar El ser Humano por naturaleza se empeña en medir, definir, comparar. Por lo tanto desde sus orígenes se estableció la necesidad de medir. Las primeras magnitudes empleadas fueron la longitud y la masa. Aquellas más intuitivas. 09/04/2017

Para la longitud se estableció como unidad el tamaño de los dedos (pulgadas) y la longitud del pie (pie), entre otros. Algunas sociedades siguen utilizando esta forma de medir. Para la masa , se compararon las cantidades mediante piedras, granos, conchas, etc. 09/04/2017

Cada persona llevaba consigo su propio patrón de medida Conveniencia: Cada persona llevaba consigo su propio patrón de medida Inconveniencia: Las medidas variaban de un individuo a otro, sin poder realizar equivalencias. 09/04/2017

Los esfuerzos realizados por Carlomagno, para unificar el sistema de unidades fracasaron debido a que cada señor feudal fijaba por derecho sus propias unidades. A medida que aumentó el intercambio entre los pueblos, se presentó el problema de la diferencia de patrones y surgió la necesidad de unificar criterios. 09/04/2017

El primer patrón de medida de longitud lo estableció Enrique I de Inglaterra, llamó “YARDA” a la distancia entre su nariz y el dedo pulgar. 1m = 1,0936 Yd Le sigue en importancia la “TOESA” creada en Francia, consistía en una barra de hierro con una longitud aproximada de dos metros. 1T =1,949 m 09/04/2017

Posteriormente, con la revolución francesa se crea el sistema métrico decimal, lo cual permitió unificar las diferentes unidades , y crear un sistema de equivalencias con numeración decimal. También existen otros sistemas métricos como el Sistema métrico inglés, Sistema técnico, y el Sistema usual de unidades en Estados unidos (SUEU) que usan otras unidades de medida. 09/04/2017

Entre ellos tienen equivalencias. El sistema métrico más actual corresponde al Sistema Internacional de Unidades ( S.I. ) y gran parte de las unidades usadas con frecuencia se han definido en término de las unidades estándar del S.I. 09/04/2017

Los orígenes del S.I. se remontan al siglo XVIII cuando se diseñó el Sistema Métrico Decimal basado en parámetros relacionados con fenómenos físicos y notación decimal. En 1798 se celebró una conferencia científica incluyendo representantes de los Países Bajos, Suiza, Dinamarca, España e Italia, además de Francia, para revisar los cálculos y diseñar prototipos modelos. Se construyeron patrones permanentes de platino para el metro y el kilogramo. 09/04/2017

Además aparecieron dos nuevos sistemas derivados del anterior: C. G. S Además aparecieron dos nuevos sistemas derivados del anterior: C.G.S. y el Sistema de Giorgi. La Conferencia General de Pesas y Medidas, que ya en 1948 había establecido el Joule (J) como unidad de energía (1 Cal = 4,186 J), en la 10a Conferencia (1954) adoptó el Sistema MKSA (metro, kilogramo masa, segundo, ampere), preexistente -originado en la propuesta del Profesor G. Giorgi de 1902-, en el cual se incluyó el Kelvin (K) y la Candela (cd), como unidades de temperatura e intensidad luminosa respectivamente. 09/04/2017

Sistema Internacional de Unidades S.I. Permite unificar criterios respecto a la unidad de medida que se usará para cada magnitud. Es un conjunto sistemático y organizado de unidades adoptado por convención El Sistéme International d´Unités (SI) esta compuesto por tres tipos de magnitudes i. Magnitudes fundamentales ii. Magnitudes derivadas iii. Magnitudes complementarias 09/04/2017

i. Magnitudes Fundamentales El comité internacional de pesas y medidas ha establecido siete cantidades básicas, y asignó unidades básicas oficiales a cada cantidad 09/04/2017

Magnitudes fundamentales (Son sólo siete) Ampere Corriente eléctrica mol Cantidad de sustancia cd Candela Intensidad luminosa K Kelvin Temperatura s segundo Tiempo kg kilogramo Masa m metro Longitud Símbolo de la unidad Unidad básica cantidad 09/04/2017

Cada una de las unidades que aparecen en la tabla tiene una definición medible y específica, que puede replicarse en cualquier lugar del mundo. De las siete magnitudes fundamentales sólo el “kilogramo” (unidad de masa) se define en términos de una muestra física individual. Esta muestra estándar se guarda en la Oficina Internacional de Pesas y Medidas (BIMP) en Francia (1901) en el pabellón Breteuil, de Sévres. Se han fabricado copias de la muestra original para su uso en otras naciones. 09/04/2017

Definición de “metro” Originalmente se definió como la diezmillonésima parte de un meridiano (distancia del Polo Norte al Ecuador). Esa distancia se registro en una barra de platino iridiado estándar. Actualmente esa barra se guarda en la Oficina Internacional de Pesas y medidas de Francia. Se mantiene en una campana de vacío a 0°C y una atmósfera de Presión 09/04/2017

Definición actual de “metro” (año 1983) El nuevo estándar de longitud del S.I. se definió como: La longitud de la trayectoria que recorre una onda luminosa en el vacío durante un intervalo de tiempo igual a 1 / 299 792 458 segundos. 09/04/2017

corresponde aproximadamente a: 300.000.000 m/s = 300.000 km/s El nuevo estándar de metro es más preciso, su definición se basa en un valor estándar para la velocidad de la luz. De acuerdo con la Teoría de Einstein , la velocidad de la luz es una constante fundamental cuyo valor exacto es 2,99792458 x 10 8 m/s corresponde aproximadamente a: 300.000.000 m/s = 300.000 km/s 09/04/2017

Definición de “segundo” La definición original de tiempo se basó en la idea del día solar, definido como el intervalo de tiempo transcurrido entre dos apariciones sucesivas del sol sobre un determinado meridiano de la tierra. Un segundo era 1 / 86 400 del día solar medio 09/04/2017

Definición actual de “segundo” (año 1976) El nuevo estándar de tiempo del S.I. se definió como: el tiempo necesario para que el átomo de Cesio 133 vibre 9 192 631 770 veces (periodos de la radiación correspondiente a la transición entre dos niveles hiperfinos) 09/04/2017

Los mejores relojes de cesio son tan precisos que no se adelantan ni se atrasan más de 1 segundo en 300 000 años 09/04/2017

Otras definiciones Unidad de temperatura: Kelvin, es la fracción 1 / 273, 16 de la temperatura termodinámica del punto triple del agua Unidad de intensidad luminosa: candela, es la intensidad luminosa en una dirección dada, de una fuente que emite una radiación monocromática de frecuencia 540 x 1012 hertz 09/04/2017

Unidad de corriente eléctrica: Ampere, es la intensidad de una corriente constante que mantenida en dos conductores paralelos, rectilíneos, de longitud infinita, de sección circular despreciable y colocados a distancia de un metro el uno del otro en el vacío , produce entre estos conductores una fuerza determinada por metro de longitud. 09/04/2017

ii. Magnitudes Derivadas Es posible medir muchas magnitudes además de las siete fundamentales, tales como: presión, volumen, velocidad, fuerza, etc. El producto o cuociente de dos o más magnitudes fundamentales da como resultado una magnitud derivada que se mide en unidades derivadas. 09/04/2017

ii. Magnitudes derivadas unidad básica Símbolo de la unidad Area metro cuadrado m2 Volumen metro cúbico m3 Frecuencia Hertz 1 / s = Hz Densidad de masa kilogramo por metro cúbico kg / m3 Velocidad metro por segundo m / s Velocidad angular radián por segundo rad / s Aceleración metro por segundo cuadrado m / s2 09/04/2017

Resistencia eléctrica Ohm Ω luminosidad Candela por metro cuadrado Fuerza Newton kg m /s2 = N Presión Pascal N / m2 = Pa Trabajo y energía Joule N m = J Potencia Watt J/s = W Carga eléctrica Coulomb A s = C Resistencia eléctrica Ohm Ω luminosidad Candela por metro cuadrado cd / m2 09/04/2017

iii. Magnitudes Complementarias Son de naturaleza geométrica Se usan para medir ángulos magnitud Unidad de medida Símbolo de la unidad Ángulo plano Radián rad Ángulo sólido Esterorradián sr 09/04/2017

Las unidades del S.I. no se han incorporado en forma total en muchas aplicaciones industriales sobre todo en el caso de aplicaciones mecánicas y térmicas, debido a que las conversiones a gran escala son costosas. Por este motivo la conversión total al S.I. tardará aún mucho tiempo. Mientras tanto se seguirán usando viejas unidades para la medición de cantidades físicas Algunas de ellas son: pie (ft), slug (slug), libra (lb), pulgada (in), yarda (yd), milla (mi), etc. 09/04/2017

Recordemos El S.I. adopta sólo una unidad de medida para cada magnitud física. El S.I. se compone de: i) M. Fundamentales: son 7, no se derivan de otra. ii) M. Derivadas: corresponden al producto o cuociente de sí misma de dos o más magnitudes fundamentales. iii) M. Complementarias: se usan para medir ángulos. 09/04/2017

Múltiplos y submúltiplos Otra ventaja del sistema métrico S.I. sobre otros sistemas de unidades es que usa prefijos para indicar los múltiplos de la unidad básica. prefijos de los múltiplos: se les asignan letras que provienen del griego. prefijos de los submúltiplos: se les asignan letras que provienen del latín. 09/04/2017

Múltiplos (letras Griegas) Prefijo Símbolo Factor de multiplicación Deca Da 10 101 Hecto h 100 102 Kilo k 1 000 103 Mega M 1 000 000 106 Giga G 1 000 000 000 109 Tera T 1 000 000 000 000 1012 Peta P 1 000 000 000 000 000 1015 Exa E 1 000 000 000 000 000 000 1018 09/04/2017

Submúltiplos (Latin) Prefijo Símbolo Factor de multiplicación Deci d 1 / 10 10 -1 Centi c 1 / 100 10 -2 Mili m 1 / 1 000 10 -3 Micro µ 1 / 1 000 000 10 -6 Nano n 1 / 1 000 000 000 10 -9 Pico p 1 / 1 000 000 000 000 10 -12 Femto f 1 / 1 000 000 000 000 00 10 -15 atto a 1 / 1 000 000 000 000 000 000 10 -18 09/04/2017

Ejemplos 45 kilómetros = 45 x 1000 metros = 45 000 m 640 µA = 640 x 1 = 0,00064 A 1 000 000 357,29 milimetros = 357,29 x 1 = 0,357 m 1 000 09/04/2017

Equivalencias más comunes De Longitud: 1 metro (m) = 100 centímetros (cm) 1 centímetro (cm) = 10 milímetros (mm) 1 metro (m) = 1 000 milímetros (mm) 1 kilómetro (km) = 1 000 metros (m) 1 kilómetro (km) = 1 000 000 milímetros (mm) 09/04/2017

Otras equivalencias de longitud 1 pulgada (in) < > 25,4 milímetros (mm) 1 pie (ft) < > 0,3048 metros (m) 1 yarda (yd) < > 0,914 metros (m) 1 milla (mi) < > 1,61 kilómetros 1 metro (m) < > 39,37 pulgadas (in) 1 femtómetro (fm) < > 10 –15 metros (m) 09/04/2017

Equivalencias de masa 1 kilogramo (kg) < > 1 000 gramos (g) 1 tonelada (ton) < > 1000 kilogramos (kg) 1 slug < > 14,6 kilogramos(kg) 09/04/2017

Equivalencias de tiempo 1 año < > 365,25 días 1 día < > 24 horas (hr) 1 hora (hr) < > 60 minutos (min) 1 minuto (min) < > 60 segundos (s) 1 hora (hr) < > 3 600 segundos (s) 1 día < > 86 400 segundos (s) 1 año < > 31 557 600 segundos (s) 09/04/2017

Equivalencias de área área = largo x ancho = longitud x longitud 1 metro cuadrado (m2) < > 10 000 centímetros2 (cm2) 09/04/2017

Equivalencias de volumen Volumen = largo x ancho x alto = long x long x long 1 metro cúbico (m3) < > 1 000 000 cm3 1 litro (l) < > 1000 cm3 1 metro cúbico (m3) < > 1 000 litros (l) 09/04/2017

Importancia de Homogeneizar Unidades. Ejemplo: El 23 de septiembre de 1999, el "Mars Climate Orbiter" se perdió durante una maniobra de entrada en órbita cuando el ingenio espacial se estrelló contra Marte. La causa principal del contratiempo fue achacada a una tabla de calibración del propulsor, en la que se usaron unidades del sistema británico en lugar de unidades métricas. El software para la navegación celeste en el Laboratorio de Propulsión del Chorro esperaba que los datos del impulso del propulsor estuvieran expresados en newton segundo, pero Lockheed Martin Astronautics en Denver, que construyó el Orbiter, dio los valores en libras de fuerza segundo, y el impulso fue interpretado como aproximadamente la cuarta parte de su valor real. El fallo fue más sonado por la pérdida del ingenio espacial compañero "Mars Polar Lander", debido a causas desconocidas, el 3 de diciembre 09/04/2017

Vernier 09/04/2017

El primer instrumento de características similares fue encontrado en un naufragio en la isla de Giglio, cerca de la costa italiana, datado en el siglo VI a. C. Aunque considerado raro, fue usado por griegos y romanos. Durante la Dinastía Han (202 a. C. - 220 d. C.), también se utilizó un instrumento similar en China, hecho de bronce, hallado con una inscripción del día, mes y año en que se realizó 09/04/2017

Se atribuye al cosmógrafo y matemático portugués Pedro Nunes (1492-1577) —que inventó el nonio o nonius— el origen del pie de rey. También se ha llamado pie de rey al vernier, porque hay quien atribuye su invento al geómetra Pierre Vernier (1580-1637), aunque lo que verdaderamente inventó fue la regla de cálculo Vernier, que ha sido confundida con el nonio inventado por Pedro Núñez. En castellano se utiliza con frecuencia la voz nonio para definir esa escala. 09/04/2017