Diseño de la Muestra.

Slides:



Advertisements
Presentaciones similares
El muestreo y otras estadísticas básicas
Advertisements

ESTIMACION DE PARAMETRO
TEORÍA DE MUESTRAS.
DETERMINACIÓN DEL TAMAÑO DE LA MUESTRA Y MÉTODOS DE MUESTREO
Tema 13. Inferencia estadística Principales conceptos. Muestreo
Objetivo Disponemos de estimaciones de la probabilidad de un suceso en dos muestras independientes. Queremos calcular qué tamaño muestral deberíamos utilizar.
Metodología Población y muestra
CONTENIDOS Teoría del muestreo ¿Cómo seleccionar una muestra?
Investigación Aplicada II
De la muestra a la población
Estimación de parámetros poblacionales
Inferencia estadística
Tipos de muestreo.
Población Y Muestra..
La prueba U DE MANN-WHITNEY
ESTIMACION DEL TAMAÑO DE LA MUESTRA.
METODOLOGIA DE LA INVESTIGACIÓN EN ENFERMERÍA
Estimación por intervalos de confianza.
DISEÑO DE LA MUESTRA ¿Para qué necesitamos recolectar datos?
Técnicas de muestreo y tamaño de muestra
Estimación por Intervalos de confianza
HUM-110 Tema VII: Selección de la Muestra
TIPOS DE MUESTREO A.12.1.
Métodos de muestreo.
Clase 3 Universo y Muestra
Inferencia Estadística
GRADO DE CONFIANZA DE LA INFERENCIA
Selección de la muestra
DR. GLENN LOZANO ZANELLY
Conceptos básicos de inferencia
INFERENCIA ESTADISTICA
Lic. Eduardo Alatrista Vargas – Docente del curso
Distribuciones muestrales Procedimientos de muestreo
CAPITULO Vlll SELECCIÓN DE LA MUESTRA
Distribución Normal o gaussiana
MUESTREO EN ESTUDIOS DESCRIPTIVOS
Seleccionar una muestra
INFERENCIA ESTADÍSTICA
MUESTREO DE ACEPTACIÓN DE LOTES POR VARIABLES
Proceso de la investigación de mercado
INTRODUCCIÓN A LA TEORÍA DE MUESTRAS Estadística E.S.O.
Unidad V: Estimación de
Distribución Normal o gaussiana
ESTADISTICA I CSH M. en C. Gal Vargas Neri.
Diseño de la Muestra PLAN DE MUESTREO
Inferencia Estadística
Capítulo 1. Conceptos básicos de la Estadística
MAESTRÍA EN GESTIÓN PÚBLICA CURSO: Diseño de Proyectos de Investigación POBLACION, MUESTRA Y MUESTREO Dr. Hugo L. Agüero Alva.
Sesión 13: Distribuciones Muestrales y Tamaño de Muestra

INTRODUCCIÓN A LOS MÉTODOS DE MUESTREO
Investigación de mercados “Muestreo”
METODOLOGÍA Y TÉCNICAS DE INVESTIGACIÓN EN CIENCIAS SOCIALES
Tomando decisiones sobre las unidades de análisis
U.D.9 LA MUESTRA.
Septiembre  Responde a quienes y cuantas personas se aplicará el instrumento de recolección de datos.
LA SELECCIÓN DE LAS MUESTRAS EN EL PROCESO DE INVESTIGACIÓN
MUESTREO : Generalidades
Muestreo Probabilístico
DATOS ESTADÍSTICOS.
Muestreos probabilísticos y no probabilísticos
León Darío Bello Parias UNIVERSIDAD DE ANTIOQUIA FACULTAD NACIONAL DE SLAUD PUBLICA “HECTOR ABAD GOMEZ”
TAMAÑO DE LA MUESTRA. Para definir el tamaño de la muestra se debe tener en cuenta los recursos disponibles y las necesidades del plan de análisis, el.
BIOESTADÍSTICA Y ESTADÍSTICA BÁSICA CHILLÁN, SEGUNDO SEMESTRE PROF. SOC. M© KEVIN VILLEGAS.
POBLACIÓN Y MUESTRA CÁLCULO DEL TAMAÑO MUESTRAL. Descripción e inferencia Población Muestra Muestreo Inferencia Resultado.
PROCEDIMIENTO DE MUESTREO
MUESTREO Parte 1: Generalidades Una vez definido el problema a investigar, formulados los objetivos y delimitadas las variables se hace necesario determinar.
TAMAÑO DE LA MUESTRA Alvaro Alfredo Bravo Dpto. de Matemáticas y Estadística Universidad de Nariño - Colombia.
Alvaro Alfredo Bravo Dpto. de Matemáticas y Estadística Universidad de Nariño - Colombia METODOS ALEATORIOS.
LOGO Muestreo Pedro Godoy G.. LOGO Inferencia estadística La Inferencia Estadística es aquella rama de la Estadística mediante la cual se trata de sacar.
Transcripción de la presentación:

Diseño de la Muestra

INTRODUCCIÓN La estadística inferencial o inferencia estadística es una parte de la estadística que comprende los métodos y procedimientos para deducir propiedades (hacer inferencias) de una población, a partir de una pequeña parte de la misma (muestra). Inferir: sacar una consecuencia de una cosa. Sacar consecuencia o deducir una cosa de otra. Estadística inferencial: Se ocupa de predecir, sacar conclusiones, para una población tomando como base una muestra (es decir, una parte) de dicha población. Como todas las predicciones, siempre han de hacerse bajo un cierto grado de fiabilidad o confianza.

CONCEPTOS . Población: Es el conjunto de individuos sobre los que hacemos cierto estudio y sus valores se conocen como parámetros. Muestra: es un subconjunto de la población y los resultados se generalizan a la población.

Muestreo: Es definido como el procedimiento empleado para obtener una o más muestras de una población Estrato: son subconjuntos de la población que agrupan unidades homogéneas. Cada estrato se muestrea por separado y se obtienen los estimadores de parámetros

Eleva costos en la aplicación y procesamiento de la investigación Complejo hacer la investigación a toda la población IMPORTANCIA EN LA TÉCNICAS DE MUESTREO Falta de tiempo y de recursos Es posible que la indagación sea incompleta

TIPOS DE MUESTREO NO PROBABILÍSTICO PROBABILÍSTICO ALEATORIO SIMPLE ESTRATIFICADO POR RACIMOS SISTEMÁTICO EL DE CUOTAS INTENCIONAL O SELECTIVO

TIPOS DE MUESTREO PROBABILÍSTICOS PROBABILÍSTICO. Las unidades de análisis o de observación pueden ser seleccionadas en forma aleatoria, es decir todos tienen la misma probabilidad de ser elegidos. El aleatorio simple: es aquel en el que todos los individuos de la población tienen la misma probabilidad de ser elegidos. El estratificado: Se divide la población total en clases homogéneas, llamadas estratos; por ejemplo, por grupos de edades, por sexo. Hecho esto, la muestra se escoge aleatoriamente en número proporcional al de los componentes de cada clase o estrato.

TIPOS DE MUESTREO PROBABILÍSTICOS Por racimos: Es para los estudios de gran escala, por ejemplo: a nivel nacional donde el proceso es dividir determinadas delegaciones y de esta manera se distribuyan las muestras. Sistemático: Se ordenan previamente los individuos de la población; después se elige uno de ellos al azar, a continuación, a intervalos constantes, se eligen todos los demás hasta completar la muestra.

EJEMPLO DE MUESTREO ALEATORIO SIMPLE Aspectos: 1) Definir características de la población (100) 2) Tamaño de la muestra, según fórmula (79) 3) Tener y numerar una lista del tamaño de la población. 4) Elegirlos de manera aleatoria, utilizando la técnica de la tómbola o tablas N= 100 n= 79

CONTINUACIÓN… N=100 n=79

EJEMPLO DE MUESTREO ESTRATIFICADO Se tienen 5 grupos de estudiantes de tercero de secundaria con una población como se indica en la tabla, se requiere aplicar un muestreo estratificado para saber sus conocimientos en matemáticas. GRUPO ESTRATO MUESTRA (25%) 3A 45 11 3B 55 14 3C 42 10 3D 51 13 3E 47 12 TOTAL N= 240 n=60

TIPO DE MUESTREO NO PROBABILÍSTICO EL DE CUOTAS: Dividir la población en subgrupos o cuotas según ciertas características: sexo, estado civil, edad y otras. Puede haber combinaciones de cuotas, tales como hombres mayores de 20 años, mujeres casadas, etc. Por lo regular se eligen aquellos de más fácil acceso hasta completar la muestra. EL INTENCIONAL O SELECTIVO: Se utiliza cuando se requiere tener casos que pueden ser representativos de la población estudiada. La selección se hace de acuerdo al esquema de trabajo del investigador.

1.6 Procedimientos para calcular el tamaño de la muestra. En este apartado se muestran algunos procedimientos para calcular el tamaño muestral. Muestras para estudios sencillos. Muestras para estudios complejos.

1.7 Muestras para estudios sencillos. Son apropiadas cuando: La población objeto de estudio es arriba de 10mil casos. El cuestionario que se aplica es reducido, entre 30 y 40 preguntas preferentemente cerradas. Las alternativas de respuesta son mutuamente excluyentes (si, no; bueno, malo; adecuado, inadecuado).

Fórmula: z= Nivel de confianza requerido para generalizar los resultados hacia toda la población. p q= Variabilidad del fenómeno estudiado. E= Precisión con la que se generalizan los resultados. z p q 2 n= 2 E

El nivel de confianza (z) se obtiene de las tablas de áreas bajo la curva normal, como la presentada en la tabla:

Generalmente se emplea el 95% y 99% de confianza, o sea, se tiene un error de 5 y 1 por ciento respectivamente. Significa que si un tamaño de muestra se calcula utilizando un 95% de confianza, la probabilidad de que los datos de la muestra resulten idénticos en la población será del 95%, y un 5% de que difieran. Cuando se sustituyen los valores en la fórmula no se pone 95. Se utilizan valores tipificados obtenidos de la tabla de área bajo la curva normal. Por ejemplo: 95% de confianza se divide entre 2 (ya que la curva normal está distribuida en dos partes iguales) = 47.50% se divide entre 100= .4750 y se busca en el cuerpo de la tabla. Después el dato tipificado que le corresponde se localiza en la columna Z de la derecha. En este caso es 1.96.

De igual forma lo podemos hacer con el 99% o cualquier otro nivel de confianza. Si queremos tener sólo un conocimiento general sobre la problemática es suficiente trabajar con un valor entre 92.5% y el 95%. Si se pretende trabajar con hipótesis y obtener elementos debidamente sustentados para formular sugerencias, es mejor elevar el nivel de confianza de 95.5% o más. Mientras más grande, mayor será el tamaño de la muestra.

El nivel de precisión (E) permite calcular el intervalo en donde se encuentran los verdaderos valores de la población. Por ejemplo, se analiza el problema de la participación en una comunidad: Para el cálculo de la muestra se utilizó una precisión de 5 por ciento y un nivel de confianza del 9%. El 50% responde que sí estaría dispuesto a colaborar. Se debe sumar y restar el 5% (precisión) al porcentaje de respuestas afirmativas, o sea: Es decir, se espera con un 95% de confianza que la respuesta a nivel de toda la población oscile entre el 45% y el 55%. Al aumentar la precisión se eleva el tamaño de la muestra. 55% y 45%

El otro término de la fórmula es la variabilidad del fenómeno (p q) El otro término de la fórmula es la variabilidad del fenómeno (p q). Entre los procedimientos para calcularla están: Si se ha realizado otro estudio similar, la variabilidad especificada para el cálculo de la muestra puede servir para nuestro caso particular. Mediante un estudio piloto de una muestra reducida. Se otorga a p y q la máxima variabilidad posible, es decir p= .5 y q= .5. En este caso se supone que existe una heterogeneidad. Al aumentar la variabilidad se incrementará el tamaño de la muestra. Con estas especificaciones se sustituyen los valores en la fórmula y se puede calcular el tamaño de la muestra.

1.8 Muestras para estudios complejos.

𝑛= 𝑍 2 𝑞 𝐸 2 𝑝 1+ 1 𝑁 𝑍 2 𝑞 𝐸 2 𝑝 −1 Muestras complejas Población pequeña Grupos en que se afija la muestra Cuestionario con muchas preguntas Preguntas abiertas 𝑛= 𝑍 2 𝑞 𝐸 2 𝑝 1+ 1 𝑁 𝑍 2 𝑞 𝐸 2 𝑝 −1

Ejercicio 1 Datos: Z=1.96 E=5% P=0.6 q=0.4 N=3859 Estudio realizado a 10 clínicas con personal femenino mayor a 30 años Datos: Z=1.96 E=5% P=0.6 q=0.4 N=3859 𝑛= 𝑍 2 𝑞 𝐸 2 𝑝 1+ 1 𝑁 𝑍 2 𝑞 𝐸 2 𝑝 −1

Paso 1 Sustituir la formula anterior 𝑛= 𝑍 2 𝑞 𝐸 2 𝑝 1+ 1 𝑁 𝑍 2 𝑞 𝐸 2 𝑝 −1 = 1.96 2 (0.4) 0.05 2 (0.6) 1+ 1 3859 1.96 2 (0.4) 0.05 2 (0.6) −1

Paso 2 Se simplifica la formula y se resuelve 𝑛= 1.96 2 (0.4) 0.05 2 (0.6) 1+ 1 3859 1.96 2 (0.4) 0.05 2 (0.6) −1 = 1.53664 0.0015 1+0.000259 1.53664 0.0015 −1 = 1024.426 1.2650 =810

𝑁ℎ 𝑁 Afijación proporcional de la muestra Muestra representativa de la población Define diferentes grupos Establecer diferencias significativas 𝑁ℎ 𝑁

Ejercicio 𝑁= 𝑁ℎ 𝑁 Datos: Nh= N=3859 Estudio realizado a 10 clínicas con personal femenino mayor a 30 años Clínica Total de mujeres mayores a 30 años (Nh) Salud 1508 Vida 1207 Sta. María 252 Del Carmen 146 Cristo Rey 33 Sana 196 Health department 173 Robles 190 Cedro 154 𝑁= 𝑁ℎ 𝑁 Datos: Nh= N=3859

Paso 1 Sustituir la formula anterior y resolverla 𝑁ℎ 𝑁 = 1508 3859 =0.41 Obtener la fracción para cada clínica

Paso 2 𝑛ℎ=( 𝑁ℎ 𝑁 )(Nh)= 0.41 (810)=621 Realizar la proporcionalidad correspondiente con cada Nh 𝑛ℎ=( 𝑁ℎ 𝑁 )(Nh)= 0.41 (810)=621

Paso 3 Elaborar una tabla con todos los datos Clínica Total de mujeres mayores a 30 años (Nh) Fracción de los grupos (Nh/N) Muestra de los grupo (nh) Salud 1508 0.4 324 Vida 1207 0.3 243 Sta. María 252 0.07 57 Del Carmen 146 0.04 32 Cristo Rey 33 0.009 8 Sana 196 0.05 41 Health department 173 Robles 190 Cedro 154 Totales 3859 0.999 810