Expresiones algebraicas

Slides:



Advertisements
Presentaciones similares
Cociente de polinomios
Advertisements

MATEMÁTICAS I MEDIO PROGRAMA EMPRENDER PREUNIVERSITARIO ALUMNOS UC
Lenguaje Algebraico:.
DIVISIÓN DE POLINOMIOS
Polinomios.
Prof: Haroldo Cornejo Olivarí
2.1 – Expresiones algebraicas
Sesión 8 Tema: Operatoria en expresiones algebraicas.
Expresiones Algebraicas Expresiones Algebraicas
POLINOMIOS.
EXPRESIONES ALGEBRÁICAS Y POLINOMIOS. librosvivos
UNIDAD 2 ÁLGEBRA “Definiciones” Dr. Daniel Tapia Sánchez
“Definiciones, Operaciones algebraicas, MCM, MCD”
INTRODUCCIÓN AL ALGEBRA
MONOMIOS Y POLINOMIOS Octavo grado.
TEMA 6: DIVISIÓN DE POLINOMIOS
EXPRESIONES FRACCIONARIAS Y RADICALES.
PRIMERAS REGLAS PARA LA TRANSFORMACIÓN DE EXPRESIONES ALGEBRAICAS
Polinomios.
EXPRESIONES ALGEBRÁICAS
Lenguaje algebraico 1. Lenguaje y expresión algebraica
Curso de: Matemáticas de Apoyo
Expresiones algebraicas
III Unidad: Productos Notables
Universidad de Managua U de M
1. EXPRESIONES ALGEBRÁICAS Y POLINOMIOS. internet
DIVISIÓN DE EXPRESIONES ALGEBRAICAS
Del lenguaje ordinario al lenguaje algebraico
Álgebra de Octavo: Monomios y Polinomios
Lenguaje algebraico 1. Lenguaje y expresión algebraica
Recuerda: propiedades de la suma y el producto
EXPRESIONES ALGEBRÁICAS Y POLINOMIOS. internet
Apuntes de Matemáticas 2º ESO
DIVISIÓN DE EXPRESIONES ALGEBRAICAS
Ecuaciones de primer grado
II.- Algebra Básica Expresión algebraica y sus partes.
TRABAJO DE MATEMÁTICAS
II Unidad: Lenguaje Algebraico
DOCENTE: Graciela Castillo MATERIA: Matemática
4 Sesión Contenidos: Conceptos básicos del álgebra de los reales.
ESPAD III * PC 09 MONOMIOS Y POLINOMIOS.
OPERACIONES ALGEBRAICAS
Operaciones Algebraicas
II.-Algebra Básica b).-Operaciones con términos semejantes.
PRODUCTO DE POLINOMIOS
ÁLGEBRA.
ÁLGEBRA Utilizar letras para representar números desconocidos.
OPERACIONES BASICAS CON ALGEBRA
Operaciones básicas con polinomios
3 Polinomios y fracciones algebraicas
Operaciones con polinomios de una variable. Operaciones con polinomios de una variable.
* Descifrando el código 
DIVISIÓN DE EXPRESIONES ALGEBRAICAS
INSTITUCION EDUCATIVA LAS FLORES
División de polinomios
Operaciones con Expresiones Algebraicas
Otras de las propiedades usadas en la división se listan a continuación: 1.Ley de los signos: a)+ entre + da + b)− entre + da − c)+ entre − da − d)− entre.
LAS EXPRESIONES ALGEBRAICAS
Apuntes de Matemáticas 1º ESO
ÁLGEBRA ) ÁLGEBRA El lenguaje que utiliza letras en combinación con números y signos, y además las trata como números en operaciones y propiedades,
MATEMÁTICAS I MEDIO PROGRAMA EMPRENDER PREUNIVERSITARIO ALUMNOS UC
Álgebra, ecuaciones y sistemas
SUMA y RESTA DE MONOMIOS
© GELV AULA 360 Polinomios 1. Adición de polinomios 2. Sustracción de polinomios 3. Multiplicación de polinomios 4. División de polinomios. Regla de Ruffini.
OPERACIÒNES ALGEBRAICAS.  Una expresión algebraica es un conjunto de cantidades numéricas y literales relacionadas entre sí­ por los signos de las operaciones.
·El lenguaje algebraico ·Expresiones algebraicas.Valor numérico ·Monomios ·Polinomios ·Potencias de polinomios. Igualdades notables.
FUNDAMENTOS DE MATEMATICAS Una expresión algebraica es una expresión en la que se relacionan valores indeterminados con constantes y cifras, todas ellas.
OPERACIONES ALGEBRAICAS: Expresión algebraica es la forma de las matemáticas que escribimos con letras, números, potencias y signos. Coeficiente 3a2 Grado.
·El lenguaje algebraico ·Expresiones algebraicas.Valor numérico ·Monomios ·Polinomios ·Potencias de polinomios.
EXPRESIONES ALGEBRAICAS: valorización y reducción
Transcripción de la presentación:

Expresiones algebraicas Una expresión algebraica es una combinación de letras, números y signos de operaciones. Las letras suelen representar cantidades desconocidas y se denominan variables o incógnitas. Las expresiones algebraicas nos permiten traducir al lenguaje matemático expresiones del lenguaje habitual.

Tipos de expresiones algebraicas Hay distintos tipos de expresiones algebraicas Dependiendo del número de sumandos, tenemos: monomios y polinomios. Algunos polinomios tienen nombre propio: binomio , trinomio , ...

Valor numérico de una expresión algebraica Si en una expresión algebraica se sustituyen las letras por números y se realiza la operación indicada se obtiene un número que es el valor numérico de la expresión algebraica para los valores de las letras dados.

Clases de expresiones algebraicas está formada por un solo término se llama monomio. Ej: 3x2 2ª- Toda expresión algebraica que esté formada por dos términos se llama binomio. Ej: 2x2 + 3xy 3ª- Toda expresión algebraica formada por tres términos se llama trinomio. Ej: 5x2 + 4y5 - 6x2y 4ª- Si la expresión algebraica tiene varios términos se llama polinomio

Polinomio es un conjunto de monomios. Tendremos en cuenta lo siguiente: 1º- Si está ordenado. Para ordenar un polinomio, colocamos los monomios de mayor a menor, según su grado. 2º- Si está completo. Completar un polinomio es añadir los términos que falten poniendo de coeficiente 0. 3º- Cuál es su grado. El grado de un polinomio es el mayor exponente de sus términos.

Ejercicios operatorios con los monomios y polinomios Suma o resta de monomios: Para sumar o restar monomios es necesario que sean semejantes. Monomios semejantes son aquellos que tienen la misma parte literal y el mismo grado. Ej: 2x3 + 5x3 - 6x3. Para hacer la operación sumamos los coeficientes y dejamos la misma parte literal. Ej: 2x3 + 5x3 - 6x3 = x3. Multiplicación de monomios: Para multiplicar monomios no es necesario que sean semejantes. Para ello se multiplican los coeficientes, se deja la misma parte literal y se suman los grados. Ej: 3xy.4x2y3= 12x3y4 División de monomios: Para dividir dos monomios, se dividen los coeficientes, se deja la misma parte literal y se restan los grados. Ej: 4x5y3:2x2y= 2x3y2

Suma de polinomios: Para sumar polinomios colocaremos cada monomio debajo de los que son semejantes y sumaremos sus coeficientes. Ej: 7x5+3x3+4x2-2x 5x5 -x2 -x 12x5+3x3+3x2-3x

Multiplicación de polinomios: Para multiplicar polinomios haremos lo mismo que para multiplicar monomios, multiplicamos los coeficientes y sumamos los grados de las letras que son iguales. Si son varios los polinomios que tenemos que multiplicar haremos lo mismo pero pondremos los que son semejantes debajo unos de otros y los sumaremos al final. Ej: P(x)= 2x5+3x4-2x3-x2+2x Q(x)= 2x3 ________________ P(x).Q(x)= 4x8+6x7-4x6-2x5+4x4

División de polinomios: Para dividir un polinomio y un monomio, ordenamos y completamos los polinomios, dividimos el primer monomio del dividendo por los monomios del divisor, multiplicamos el cociente por el divisor y se lo restamos del dividendo. Así sucesivamente. Para dividir dos polinomios haremos lo mismo que para dividir monomios y polinomios, teniendo en cuenta que en el divisor nos encontraremos con 2 términos. Ej: 4x4-2x3+6x2-8x-4 2x -4x +2x3 -6x2+8x 2x3-x2+3x-4 cociente -4 residuo