¿Que son los vectores, cuales son sus componentes y como se resuelven?

Slides:



Advertisements
Presentaciones similares
2 100 Km P C.
Advertisements

Magnitudes físicas escalares y vectoriales.
Santiago, 07 de septiembre del 2013
UNIVERSIDAD NACIONAL DE INGENIERIA
Puntos en el plano. Coordenadas
JUAN LUIS CHAMIZO BLÁZQUEZ
Estática Claudia Ramírez
SISTEMAS DE FUERZAS.
Física I Vectores: Definición. Elementos. Vector Resultante y Equilibrante. Métodos de: solución, paralelogramo, polígono. Vectores en el plano, suma de.
4. Descomposición rectangular
Vectores en el espacio 2º Bachillerato
UNIDAD IV: GEOMETRÍA DE VECTORES
Fuerzas U.1 Fuerza: una magnitud para medir las interacciones
VECTORES LIBRES EN EL ESPACIO
UNIDAD 3 Clase 3.3 Tema: Vectores en R2 y R3
Vectores.
INTRODUCCION AL ESTUDIO DE
Recursos matemáticos para física
MAGNITUDES ESCALARES Y VECTORIALES
Lesly Guerrero Décimo B 2013
Magnitudes Física y química 1º Bachillerato.
Esto es sólo una muestra, el power point no está completo
Física I. Sesión Nº 1: Vector unitario. Ángulos y cosenos directores.
Centro Pre Universitario
VECTORES.
Vectores Un vector es un ente matemático que posee dirección sentido y magnitud. La dirección se refiere a la posición del vector: Horizontal, vertical,
Vectores Un vector es un ente matemático que posee dirección sentido y magnitud. La dirección se refiere a la posición del vector: Horizontal, vertical,
Vectores en el plano. Producto escalar.
Mónica Sarahí Ramírez Bernal A IIS 11 Capitulo 3
Vectores en el espacio 2º Bachillerato
Profesor: Carlos Alvarado de la Portilla
UPC TEMA : VECTORES EN R2 y R3 TÓPICOS DE MÁTEMATICA 1 MA112
Vectores.
SISTEMAS DE FUERZAS Física y Química 4º ESO Colegio Inmaculada Gijón
Vectores fijos en el plano
GEOMETRÍA ANALÍTICA EN EL PLANO.
VECTORES EN EL PLANO.
Vectores.
Vectores Física.
Un vector fijo es un segmento orientado determinado por dos puntos.
CALCULO VECTORIAL CALCULO VECTORIAL.
VECTORES EN EL PLANO.
Instituto de Fisica Universidad Católica de Valparaíso
Prof. Carlos E. Pérez Flores
UNIVERSIDAD TECNICA DE COTOPAXI
ELEMENTOS DE ÁLGEBRA Y CÁLCULO VECTORIAL
Física I Ing. Henry Lama Cornejo
CANTIDADES ESCALARES Son aquellas que sólo requieren para su determinación una magnitud. Ejemplo. masa, potencia, energía.
INTRODUCCION A VECTORES
UNIVERSIDAD AUTÓNOMA DE QUERÉTARO
Unidad III: Cuarto Año Medio Geometría “Vectores”
VECTORES.
VECTORES MÉTODO DEL TRIÁNGULO
VECTORES.
VECTORES 1 Conceptos fundamentales 2. Elementos de un Vector
Natalia Luengas Décimo b Física
Instituto de Fisica Universidad Católica de Valparaíso
Ingeniería Mecánica Estática
FISICA MAGNITUDES PROFESOR: URIARTE NESTOR LUIS.
DEFINICIÓN DE VECTORES
Vectores * Un vector es un segmento de recta orientado.
Luisa Maria Arango Guarin 10B.  Un vector es la representación grafica de una magnitud física a través de un segmento de recta dirigido.
Facultad de Ingeniería Electrónica e Informática
VECTORES EN EL PLANO PEDRO GODOY G SANTIAGO MIAMI MADRID A B C Un avión puede volar de Santiago a Madrid haciendo una escala técnica en Miami,
X Ejemplos.- La grafica muestra los vectores unitarios en el espacio. Y.
2.2 Representación Vectorial
CALCULO VECTORIAL VECTORES EN R2 y R3
UNIVERSIDAD NACIONAL EXPERIMENTAL DEL TACHIRA UNIDAD DE ADMISION CURSO PROPEDEUTICO ASIGNATURA FISICA Prof. Juan Retamal G.
4° Secundaria Vectores Matemática
UNIDAD 06 FUERZA: APLICACIONES Jaime Mayhuay Castro.
Transcripción de la presentación:

¿Que son los vectores, cuales son sus componentes y como se resuelven?

Un vector físico es una magnitud física caracterizable mediante un punto de aplicación u origen, un módulo, una dirección y un sentido, o alternativamente por un número de componentes independientes tales que las componentes medidas por diferentes observadores son relacionables de manera sistemática.

Elementos de un vector Punto de aplicacion u origen. Magnitud o módulo: determina el tamaño del vector. Dirección: determina la recta en el espacio en que se ubica el vector. Sentido: determina hacia qué lado de la recta de acción apunta el vector

Representación gráfica y notación Se representa como un segmento con dirección y sentido, dibujado como una "flecha". Su largo representa la magnitud, su pendiente la dirección y la "punta de flecha" indica su sentido. En física las variables escalares se representan con una letra: a, x, p, etc., y los vectores con una flecha encima: , representándose también frecuentemente mediante letras en negrita: . Además de estas convenciones los vectores unitarios cuyo módulo es igual a uno son representados frecuentemente con un circunflejo encima

Componentes de un vector Las coordenadas o componentes del vector en un sistema de referencia pueden escribirse entre paréntesis y separadas con comas: . Si se desea expresar al vector como combinación de los vectores, se representará como: Estas representaciones son equivalentes entre sí, y los valores ax, ay, az, se llaman componentes o coordenadas del vector, que salvo que se indique lo contrario consideraremos siempre como números reales.

Tipos de vectores Vectores libres: no tienen su extremo inicial -u origen- fijado en ningún punto en particular. Vectores fijos: tienen su extremo inicial -u origen- fijado en algún punto en particular. Vectores equipolentes: son vectores que presentan iguales módulos, direcciones y sentidos. Vectores deslizantes: son vectores equipolentes que actúan sobre una misma recta. Vectores concurrentes: comparten el mismo extremo inicial -u origen-. Vectores unitarios: vectores de módulo igual a uno. Vectores opuestos: vectores de distinto sentido, pero igual magnitud y dirección (también vectores anti - paralelos)

Operaciones con vectores

Suma de vectores

Método del paralelogramo Consiste en disponer gráficamente los dos vectores de manera que los orígenes de ambos coincidan, completando el resto del paralelogramo con las paralelas a cada uno (ver gráfico a la derecha). El resultado de la suma se obtiene partiendo del origen de ambos vectores.

Método del triángulo Consiste en disponer gráficamente un vector a continuación de otro, es decir, el extremo inicial del vector "b" coincide con el extremo final del vector "a". Luego se traza una diagonal que une el inicio del vector "a" con el resto de los extremos

Resta de vectores Para restar dos vectores libres U y V se suma U con el opuesto de V, esto es U - V = U + (-V). Las componentes del vector resta se obtienen restando las componentes de los vectores

Producto por un escalar

Producto por un escalar Partiendo de la representación gráfica del vector, sobre la misma línea de su dirección tomamos tantas veces el módulo de vector como marque el escalar, que de ser negativo cambia el sentido (ver gráfico). Partiendo de un escalar y de un vector , el producto de por es , es el producto de cada una de las coordenadas del vector por el escalar, representando el vector por sus coordenadas:

Ángulo entre dos vectores

Para calcular el ángulo entre dos vectores se usa la siguiente fórmula:

El cual se puede generalizar a cualquier dimensión con excepción de los casos superiores A y B:

Cuando se trata algebraicamente en un espacio vectorial el ángulo entre dos vectores está dado por Hay que tener en cuenta que el ángulo que devuelve esta formula está comprendido entre 0º y 180º, no devuelve el signo del ángulo.

FIN